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Introduction to Quantum Key Distribution (QKD)

▶ QKD enables two parties (Alice and Bob) to generate a
shared secret key for secure communication.

▶ Security is based on quantum mechanics, ensuring
information-theoretic security.

▶ Introduced by Bennett and Brassard in 1984 (BB84
protocol).

▶ Security relies on the no-cloning theorem and quantum
uncertainty.



Why is QKD Needed?

▶ Quantum computers (e.g., Shor’s algorithm) threaten
traditional cryptography (e.g., RSA).

▶ QKD provides unconditional security based on quantum
principles.



Basic Principles and Steps of QKD

▶ Two stages: quantum communication and classical
post-processing.

▶ During quantum communication, Alice sends quantum states
to Bob. The no-cloning theorem states that it is impossible
to create an exact copy of an unknown quantum state, which
prevents Eve from perfectly copying the transmitted quantum
information.

▶ Any attempt by Eve to intercept and measure the quantum
states introduces detectable disturbances, allowing Alice and
Bob to identify the presence of an eavesdropper.



Basic Principles and Steps of QKD

▶ Classical post-processing includes error correction and
privacy amplification to ensure a secure key by reducing
Eve’s potential knowledge.

▶ Error correction is used to reconcile discrepancies between
Alice’s and Bob’s measurement outcomes. Due to noise in the
quantum channel, their raw keys may differ slightly. Error
correction allows them to correct these differences without
revealing their entire key to each other or to an eavesdropper.

▶ Error correction protocols typically involve exchanging
syndromes over a public channel, which helps Bob adjust his
key to match Alice’s. This process is designed to minimize the
information leaked to an eavesdropper.



One-Time Pad & QKD

▶ The One-Time Pad requires a secret key as long as the
message, used only once.

▶ QKD provides a secure method to generate and distribute
such keys, ensuring perfect secrecy.



Motivation for Continuous-Variable QKD (CV-QKD)

▶ Continuous-Variable QKD (CV-QKD) uses the continuous
nature of quantum states, specifically the quadratures
(position and momentum), to encode information.

▶ Unlike discrete-variable QKD, CV-QKD can leverage standard
telecommunication technology, making it more practical for
integration with existing fiber networks.

▶ CV-QKD is well-suited for applications where the use of
coherent states and homodyne detection provides advantages
in terms of implementation simplicity and higher key rates at
short distances.

▶ The continuous nature of quadratures (q and p) aligns with
the practical implementation of Gaussian modulation, which is
more adaptable for high-speed communication.



Coherent States and Gaussian Distribution
▶ A coherent state is a quantum state of the electromagnetic

field that resembles classical light.

▶ Coherent states are eigenstates of the annihilation operator â:
â|α⟩ = α|α⟩, where α is a complex number representing the
amplitude of the coherent state.

▶ In phase space, the amplitude α determines the mean
position of the coherent state, with quadratures (q and p)
representing the real and imaginary components.

▶ The coherent state is represented by a Gaussian distribution
in phase space, where the variance represents the quantum
uncertainty, giving the state its quantum nature.



Gaussian Modulation and Measurement

▶ In CV-QKD, the amplitudes of coherent states are
modulated using a Gaussian distribution. This is known as
Gaussian modulation.

▶ The mean values of the coherent states are varied according
to Gaussian statistics, which allows for the encoding of
information in the continuous quadratures.

▶ At the receiver’s side (Bob), homodyne or heterodyne
detection is used to measure the quadratures of the coherent
states.

▶ Homodyne detection measures one quadrature (q and p),
while heterodyne detection measures both quadratures
simultaneously, providing complete information about the
state.



Thermal Loss Channel and Optical Fiber Links

▶ The communication channel in CV-QKD is modeled as a
thermal loss channel, which is a type of Gaussian channel.

▶ A thermal loss channel accounts for both the loss of photons
and the addition of thermal noise during transmission.

▶ In practical implementations, this channel is often realized
using optical fiber links, which introduce both attenuation
(loss) and environmental noise.

▶ The transmissivity of the channel represents the fraction of
the signal that successfully reaches Bob, while the rest may be
lost or intercepted by an eavesdropper.

▶ Understanding the properties of the Gaussian channel is
crucial for accurately estimating the secret key rate and
ensuring the security of the protocol.



Individual Attacks in CV-QKD

▶ In the case of individual attacks, Eve interacts independently
with each signal sent from Alice to Bob.

▶ Eve attempts to gain information by injecting a thermal
state into the channel with variance ω = τξ

1−τ + 1, where:
▶ τ is the transmissivity of the channel.
▶ ξ is the excess noise introduced by Eve.

▶ This model allows Eve to gather information while maintaining
a minimal impact on the channel’s overall behavior.



Secret Key Rate for the Asymptotic Regime

▶ The secret key rate K is defined as the difference between
the mutual information shared by Alice and Bob (IAB) and the
information Eve has about Alice’s data (IAE ):

K = IAB − IAE (1)

▶ The mutual information between Alice and Bob, IAB , is given
by:

IAB =
1

2
log2

(
1 +

τV
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)
(2)

▶ The mutual information between Eve and Alice, IAE , is given
by:

IAE =
1

2
log2
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)
(3)



Intuition Behind the Secret Key Rate

▶ The secret key rate K is derived as the difference between the
information shared by Alice and Bob and the information Eve
could potentially acquire.

▶ The rationale behind this equation is that the security of the
key relies on Alice and Bob having more information than Eve.

▶ If Eve’s information (IAE ) approaches Alice and Bob’s
information (IAB), the secret key rate decreases, reducing the
security of the protocol.

▶ The goal of CV-QKD is to maximize IAB and minimize IAE ,
ensuring a positive secret key rate that guarantees secure
communication.



Coherent Attacks in CV-QKD

▶ In coherent attacks, Eve is more powerful and uses
quantum memory to store intercepted quantum states for
later measurement.

▶ Eve interacts collectively with the transmitted signals and can
correlate her measurements to maximize her information gain.

▶ The security analysis in the presence of coherent attacks
involves the Holevo information (χ), which is the quantum
counterpart of mutual information.

▶ The Holevo information provides an upper bound on the
information that Eve can obtain about the key after
interacting with the quantum system.



Reconciliation Efficiency in Error Correction Protocols

▶ The reconciliation efficiency β is a key factor in finite-size
effects of QKD and is related to the efficiency of error
correction (EC) protocols.

▶ The relationship is given by βIAB = H(X )− leakec, where:
▶ When leakec = H(X |Y ), β = 1, representing the ideal

asymptotic case, as stated by the Slepian-Wolf theorem.
▶ In reality, leakec > H(X |Y ) due to imperfections in practical

EC protocols, for example, protocols that utilize low-density
parity-check (LDPC) codes.



Tanner Graph for LDPC Codes
▶ LDPC codes can be represented using a Tanner graph, which

consists of message nodes and parity-check nodes.
▶ Below is an example Tanner graph with 6 message nodes and

3 check nodes.
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Parity-Check Matrix and Syndrome Calculation

▶ The parity-check matrix H corresponding to the previous
Tanner graph is:

H =

1 0 1 0 1 0
0 1 1 1 0 0
1 0 0 1 1 1


▶ The syndrome s for a message vector m is calculated as:

s = H ·mT mod 2



Code Rate Calculation and Practical Challenges

▶ The length of the syndrome determines the number of parity
checks, which in turn defines the code rate Rcode of the LDPC
scheme.

▶ For our example, with 6 message nodes and 3 check nodes,
the code rate Rcode is:

Rcode = 1− Ncheck

Nmessage
= 1− 3

6
= 0.5

▶ In practice, it is very challenging to approach the
Slepian-Wolf limit for all SNR regimes, where SNR
describes the conditional entropy

H(X |Y ) ≤ leakec := q(1− Rcode) = q
Ncheck

Nmessage
.

Where q is the descretization.



Conclusion

▶ Quantum Key Distribution (QKD) provides a fundamental
method for secure communication, leveraging quantum
principles to ensure unconditional security.

▶ Continuous-Variable QKD (CV-QKD) utilizes coherent states
and Gaussian modulation, offering practical advantages for
integration with existing telecommunication infrastructure.

▶ Efficient Error Correction (EC) methods are crucial for
achieving secure key rates in CV-QKD. These methods must
adapt to different SNR regimes to optimize performance.

▶ Practical implementations require overcoming constraints such
as memory usage, speed, computational power, and
achieving a high successful probability of error correction.
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