Continuous-variables QKD with Preparation noise

IN A WIRELESS SETTING

20 June 2024

Newcastle

Dr. Panagiotis Papanastasiou School of Physics, Engineering, and Technology

No-cloning theorem in a copy-resend scenario

- Heisenberg's principle manifestation.
- Alice sends quantum states out of an non-orthogonal set to Bob (Quantum Superposition)
- Eve "duplicates" Alice's states and resends one of the perturbed copies.
- Quantum state copies cannot be created without perturbing the original state.
- Eve's presence can be discovered (with statistics)

W. K. Wootters and W. H. Zurek, Nature **299**, 802-803 (1982) N. Gisin et al., Rev. Mod. Phys.**74**, 145 (2002)

Quantum states of light

Bosonic system

Mode of radiation field associated with a phase space, spanned by variables similar to position and momentum

Wigner function W(q, p) of a mode in phase space

pendulum

Candidates for signal states:

- produced and transmitted efficiently with current technology (e.g. optical fibres).
- o form non-orthogonal sets (e.g. coherent states)
- encode messages in the energy of the light field, as in an original (classical) setting for telecommunications
- described by continuous degrees of freedom (i.e. continuous variables, quadratures), in the phase space representation by a quasi-probability distribution (Wigner function).

Gaussian states

- o characterized by Gaussian Wigner W(q, p) function
- described completely only by the first \bar{x} and second
 moments *V* (covariance matrix)
- V is reduced to a diagonal form V^{\bigoplus} up to symplectic transformation **S** (Williamson's theorem).

$$V = \mathbf{S}. V^{\oplus}. S^T$$

simple calculation of von Neumann entropy via symplectic
 spectrum v_k of V for an M-mode state $\hat{\rho}$.

$$S(\hat{\rho}) = \sum_{i=1}^{M} h(v_k \oplus)$$

C. Weedbrook et al., Rev. Mod. Phys. 84, 621 (2012)

Gaussian modulation of coherent states

- Alice modulates coherent states with a Gaussian distribution, i.e., adds random displacements
- Sends them to Bob through a quantum channel
- Bob is measuring with either a homodyne detection (plus shifting, q or p) or a heterodyne detection (q and p)
- Error correction and Privacy amplification is taking place with respect to x or y with the use of the authenticated classical channel

F. Grosshans and P. Grangier, Phys. Rev. Lett. **88**, 057902 (2002) F. Grosshans, G. van Assche *et al.*, Nature (London) **421**, 238 (2003) C. Weedbrook, A. M. Lance, W. P. Bowen *et al.*, Phys. Rev. Lett. **101**, 200504 (2008)

Secret key distribution

One-time Pad key:

- random string
- *shared* by the parties
- kept completely *secret*
- length of the message, never be reused (*performance constrains*, e.g., achievable distance)

Quant. comm.

Quantum key distribution:

- Alice: a random variable encoded into quantum states.
- Eavesdropper: controls quantum channel to Bob
- Bob: quantum measurements decoding
- Alice and Bob: error correction between encoding decoding outputs (classical communication)
 - Alice and Bob: compare instances of encoded-decoded outputs (classical communication, channel parameter estimation)
 - Alice and Bob: privacy amplification, compression to a smaller but secret random data sting. (classical post-processing)

sharing

randomness

secrecy

Quantum Channel and Attacks

Dilation of Gaussian Attacks

M. Navascues et al, Phys. Rev. Lett. 97, 190502 (2006) S. Pirandola, S. L. Braunstein, and S. Lloyd, Phys. Rev. Lett. 101, 200504 (2008)

Asymptotic Secret key Rate

$$R_{\infty}(\mu,\tau,\omega) = \beta I(x;y) - \chi(E;\{x,y\})$$

- Infinite uses of the channel
- I(x:y) = H(x) H(x|y) is the mutual information between the variables of the parties.
- H(.) is the Shannon entropy
- eta is the reconciliation parameter accounting for the efficiency of the error correction
- $\chi(E: \{x, y\}) = S(\hat{\rho}_E) S(\hat{\rho}_{E|\{x,y\}})$ is the Holevo information between Eve's system *E* and the variable $\{x, y\}$
- No-dependence on unitary transformations, Gaussian attacks minimize R

I. Devetak and A. Winter, Proc. R. Soc. A 461, 207 (2005).

F. Furrer, Ph.D., Leibnitz University, Hannover, 2012.

PLOB bound

- (Quantum) telecommunications bound
- Rates can be comparable to DV-QKD also in terms of achievable distance
- We can have end-to-end settings that can lead to QKD networks
- New protocols for aproaching the bound: Refine the strategy for communication and post-processing steps
- Detailed description including practical steps: decrease the performance to realistic levels
 - S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Nat. Commun 8,15043 (2017)
 - M. Lucamarini, Z.L. Yuan, J.F. Dynes, et al., Nature 557, 400-403 (2018).
 - Y. Zhang et al., Phys. Rev. Lett. 125, 010502 (2020)
 - S. Pirandola et al., Nat. Photon. 9, 397-402 (2015).
 - M. Ghalaii, P. Papanastasiou, and S. Pirandola, npj Quantum Inf 8, 105 (2022)

Composable Framework Security

Secret key length:

 $\theta := \log_2(2\varepsilon_{\rm h}^2\varepsilon_{\rm cor})$

 $s_n \leq n[H(l) - \chi(l:E)_{\rho}] - \text{leak}_{ec}$ $-\sqrt{n}\Delta_{aep}+\theta.$

Finite size penalty:

$\Delta_{\text{aep}} \simeq 4 \log_2 \left(\sqrt{|\mathcal{L}|} + 2 \right) \sqrt{\log_2(2/\varepsilon_s^2)}$

Overall security:

 $\varepsilon = \varepsilon_{\rm cor} + \varepsilon_{\rm s} + \varepsilon_{\rm h} + p_{\rm ec} n_{\rm pm} \varepsilon_{\rm pe}$

Reconciliation efficiency:

 $H(l) - n^{-1} \text{leak}_{ec} = \beta I(k:l)$

Composable framework:

- Cryptographic primitives associated with parameter ε
- ϵ probability of failure of the primitive
- protocol consist of *n* primitives: $\varepsilon = \varepsilon_1 + \cdots + \varepsilon_n$
- Security proof: guaranties that $\varepsilon_i \ll 1$, i.e., $\varepsilon \ll 1$
- · Required when the number of exchanged signals is limmited

S. Pirandola, P. Papanastasiou, arXiv:2301.10270v3

Smooth min-entropy

Classical Guessing probability:

$$\sum_{y} \rho(y) \max_{x} \rho(x|y) = \exp\left(-H_{\min}(X|Y)\rho\right)$$

$$H_{\min}(A|B)_{\rho} = \sup_{\sigma_B \in \mathcal{S}_{\bullet}(B)} \sup \left\{ \lambda \in \mathbb{R} : \rho_{AB} \le \exp(-\lambda)I_A \otimes \sigma_B \right\}$$

Smoothing (Uncertainty about the probability distribution):

$$H^{\varepsilon}_{\min}(A|B)_{\rho} := \max_{\tilde{\rho}_{AB} \in \mathscr{B}^{\varepsilon}(\rho_{AB})} H_{\min}(A|B)_{\tilde{\rho}}$$

M. Tomamichel, arXiv:1504.00233

Uniform Randomness Extraction

- Skipped the EC step (analysis too complicated for this talk)
- Discretized variables
- Variables are n-length strings (finite-size)

S. Pirandola and P. Papanastasiou, arXiv:2301.10270

Uniform Randomness Extraction

$$\varepsilon_{\rm s} + \frac{1}{2}\sqrt{2^{s_n - H_{\min}^{\varepsilon_{\rm s}}(B^n | E^n)_{\tilde{\rho} \otimes n}}} \le \varepsilon_{\rm sec}$$

-1

$$\begin{array}{ll} \text{Secret key length:} & s_n \leq H_{\min}^{\varepsilon_{\mathrm{s}}}(B^n | E^n)_{\tilde{\rho}^{\otimes n}} + 2\log_2(2\varepsilon_{\mathrm{h}}) \\ & - \operatorname{leak}_{\mathrm{ec}} - \log_2(2/\varepsilon_{\mathrm{cor}}) & \longleftarrow & \operatorname{Leakage terms from EC} \\ & = H_{\min}^{\varepsilon_{\mathrm{s}}}(B^n | E^n)_{\tilde{\rho}^{\otimes n}} + \log_2(2\varepsilon_{\mathrm{h}}^2\varepsilon_{\mathrm{cor}}) - \operatorname{leak}_{\mathrm{ec}} \end{array}$$

Asymptotic Equipartition property

$$\Delta_{aep} \simeq 4 \log_2 \left(\sqrt{\aleph} + 2\right) \sqrt{\log_2(2/\varepsilon_s^2)}$$
Discretisation: connection with the EC

Asymptotic rate with composable terms

Channel Parameter Estimation

$$\sum_{i=1}^{N} [x]_i [y]_i$$

$$\widehat{T} = \frac{1}{\eta(\sigma_x^2)^2} \widehat{C}_{xy}^2 = \frac{V_{\text{Cov}}}{\eta(\sigma_x^2)^2} \left(\frac{\widehat{C}_{xy}}{\sqrt{V_{\text{Cov}}}}\right)^2 \qquad \qquad \frac{4T^2}{V_0 m} \left[c_{\text{pe}} + \frac{\sigma_z^2}{\eta T \sigma_x^2}\right]$$

$$V_{\rm Cov} = \frac{1}{V_0 m} \sigma_x^2 \sigma_z^2$$

$$\left[\frac{2}{\sigma_{x}^{2}}\right] \coloneqq \sigma_{T}^{2} \qquad T_{\mathrm{wc}} \simeq T - w\sigma_{T}$$

$$[\sigma_z^2]_{\rm wc}\simeq \sigma_z^2+w\sqrt{V_z}$$

output, signal and noise:

$$y = \sqrt{\eta T}x + z$$

PE Rate:
$$R^{\mathrm{pe}}_{\infty} = \beta[I]_{\mathbf{\hat{p}}} - [\chi_{\rho}]_{\mathbf{p}_{\mathrm{wc}}}$$

 $\hat{\sigma}_{z}^{2} = \frac{1}{V_{0}m} \sum_{i=1}^{V_{0}m} \left(y - \sqrt{\eta \widehat{T}} x \right)^{2} \qquad V_{z} = \frac{2(\sigma_{z}^{2})^{2}}{V_{0}m}$

Preparation Noise Scheme

- Modelling imperfections due to cheap light sources
- ν preparation noise
- η preparation losses
- Noise and losses are trusted
- We assume a calibrated system (no PE for η and ν)

Indoors environment

- ϕ irradiance angle (receiver's normal)
- $\Phi_{1/2}$ beam's half-power semi-angle
- ψ incidence angle
- Ψ_c receiver's FOV
- d distance between receiver-transmitter
- X hight of the room
- Y room's dimension

- Ambient light:
 - not dependent on FOV
 - Isotropic
 - Noise $\sim p_n$ (spectral irradiance)

Light from windows:

- Modelled in free-space studies
- windowless room assumption
- Light from artificial sources:
 - dependent on receiver's parameters
 - noise from reflections

O. Elmabrok and M. Razavi, J. Opt. Soc. Am. B 35, 197-207 (2018) O. Elmabrok, M. Ghalaii, and M. Razavi, J. Opt. Soc. Am. B 35, 487-499 (2018)

Indoors environment

•
$$\phi$$
 irradiance angle (receiver's normal)

- $\Phi_{1/2}$ beam's half-power semi-angle
- ψ incidence angle
- Ψ_c receiver's FOV
- *d* distance between receiver-transmitter
- X hight of the room
- Y room's dimension
- A receiver's area

$$H_{\rm DC} = \begin{cases} \frac{A(m+1)}{2\pi d^2} \cos(\phi)^m T_s(\psi) \times g(\psi) \cos(\psi) & 0 \le \psi \le \Psi_c \\ 0 & \text{elsewhere} \end{cases},$$

Directivity number:
$$m = \frac{-\ln 2}{\ln(\cos(\Phi_{1/2}))}$$

Concentrator function: $g(\psi) = \begin{cases} \frac{n^2}{\sin^2(\Psi_c)} & 0 \le \psi \le \Psi_c \\ 0 & \psi > \Psi_c \end{cases}$.

O. Elmabrok and M. Razavi, J. Opt. Soc. Am. B 35, 197-207 (2018) O. Elmabrok, M. Ghalaii, and M. Razavi, J. Opt. Soc. Am. B 35, 487-499 (2018)

Results:

Parameters	Values
$\Phi_{1/2}$	1^o
d	3 m
n	1.5
Α	$0.1 \ cm^2$
p_{ec}	0.95
β	0.98
u_{el}	0.015 <i>SNU</i>
η_d	0.6
ε	$\sim 10^{-10}$
p_n	$10^{-9} \frac{w}{nm} / m^2$
λ	880 nm
ξrec	0.002

Reverse reconciliation-Heterodyne detection

Conclusion and Outlook

- Trade-off: higher repetition rates vs access to the receiver from any angle
- Trade-off: higher repetition rates vs quality-focus of the beam

Future work:

- Receiver's Area and repetition rate connection
- FOV and artificial light noise connection (geometry of the room)
- Mitigate the negative phenomena through post-selection techniques

Thank You !