Continuous-variables QKD with Preparation noise With
ation noise
ELESS SETTING
20 June 2024 Dr. Panagiotis Papanastasiou
Newcastle School of Physics, Engineering, and Te **Dr. Panagiotis Papanastasiou
Physics, Engineering, and Technology**
Physics, Engineering, and Technology OTSE

School of Physics, Engineering, and Technology

School of Physics, Engineering, and Technology

IN A WIRELESS SETTING

Newcastle School of Physics, Engineering, and Technology

No-cloning theorem in a copy-resend scenario [•] Heisenberg's principle manifestation.
• Heisenberg's principle manifestation.
• Alice sends quantum states out of an non-orthogonal set to Bob (Quantum Superposition)
• Eve "duplicates" Alice's states and resends one o

-
- Heisenberg's principle manifestation.
• Alice sends quantum states out of an non-orthogonal set to Bob (Quantum Superposition)
• Eve "duplicates" Alice's states and resends one of the perturbed copies.
• Quantum state co
-
- Quantum state copies cannot be created without perturbing the original state.
-

o Bob (Quantum Superposition)
urbed copies.
ng the original state.
W. K. Wootters and W. H. Zurek, Nature **299**, 802-803 (1982)
N. Gisin et al., Rev. Mod. Phys.**74,** 145 (2002) O Bob (Quantum Superposition)
urbed copies.
ng the original state.
W. K. Wootters and W. H. Zurek, Nature 299, 802-803 (1982)
N. Gisin et al., Rev. Mod. Phys.**74,** 145 (2002)

Quantum states of light

Bosonic system

Mode of radiation field associated with a phase space, spanned by variables $\begin{tabular}{l|l|l|} \hline \multicolumn{1}{l|l|}{{\footnotesize\begin{tabular}{l|l|}p{3.5cm}} \hline \multicolumn{1}{l}{}\\ \hline \multicolumn{1}{l}{\footnotesize\begin{tabular}{l|l|}p{4.5cm}} \hline \multicolumn{1}{l}{\footnotesize\begin{tabular}{l|l|}p{4.5cm}} \hline \multicolumn{1}{l}{\footnotesize\begin{tabular}{l|l|}p{4.5cm}} \hline \multicolumn{1}{l}{\footnotesize\begin{tabular}{l|l|}p{4.5cm}} \hline \multicolumn{1}{l}{\footnotesize\begin{tab$ momentum www.www.www.www.www.www.

Wigner function $W(q, p)$ of a mode in phase space

pendulum

Candidates for signal states:

- o produced and transmitted efficiently with current technology (e.g. optical fibres).
- o form non-orthogonal sets (e.g. coherent states)
- o encode messages in the energy of the light field, as in an original (classical) setting for telecommunications
- o described by continuous degrees of freedom (i.e. continuous variables, quadratures), in the phase space representation by a quasi-probability distribution (Wigner function).

Gaussian states

- o characterized by Gaussian Wigner $W(q, p)$ function
- \circ described completely only by the first \bar{x} and second moments V (covariance matrix)
- \circ V is reduced to a diagonal form V^{\bigoplus} up to symplectic transformation S (Williamson's theorem).

 $V = S \cdot V^{\bigoplus} \cdot S^T$

o simple calculation of von Neumann entropy via symplectic spectrum v_k of **V** for an M-mode state $\hat{\rho}$.

$$
S(\hat{\rho}) = \sum_{i=1}^{M} h(v_k^{\oplus})
$$

C. Weedbrook et al., Rev. Mod. Phys. 84, 621 (2012)

Gaussian modulation of coherent states

- Alice modulates coherent states with a Gaussian distribution, i.e., adds random displacements
- Sends them to Bob through a quantum channel
- Bob is measuring with either a homodyne detection (plus shifting, q or p) or a heterodyne detection $(q$ and $p)$
- Error correction and Privacy amplification is taking place with respect to x or y with the use of the authenticated classical channel

C. Weedbrook, A. M. Lance, W. P. Bowen et al., Phys. Rev. Lett. 101, 200504 (2008) F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902 (2002) F. Grosshans, G. van Assche et al., Nature (London) 421, 238 (2003)

Secret key distribution

One-time Pad key:

-
- <u>One-time Pad key:</u>

 random string

 shared by the parties

 kent completely *secret* • shared by the parties
- kept completely secret
- length of the message, never be reused (performance constrains, e.g., achievable distance)

Quantum key distribution:

- Alice: a random variable encoded into quantum states.
-
- Bob: quantum measurements decoding
- Alice: a random variable encoded into quantum states.

Eavesdropper: controls quantum channel to Bob

Bob: quantum measurements decoding

Alice and Bob: error correction between encoding decoding
 $\begin{pmatrix}\n\frac{3}{5} \\
\frac{3}{5} \\$ • Alice and Bob: error correction between encoding decoding outputs (classical communication)
- Alice and Bob: compare instances of encoded-decoded outputs (classical communication, channel parameter estimation) outputs (classical communication, channel parameter all the stimation)
estimation)
Alice and Bob: privacy amplification, compression to a smaller and Bob:
- but secret random data sting. (classical post-processing)

Quantum Channel and Attacks

Dilation of Gaussian Attacks

S. Pirandola, S. L. Braunstein, and S. Lloyd, Phys. Rev. Lett. 101, 200504 (2008)

Asymptotic Secret key Rate **Asymptotic Secret key Rate**
 $R_{\infty}(\mu, \tau, \omega) = \beta I(x; y) - \chi(E; \{x, y\})$

• Infinite uses of the channel

• $I(x; y) = H(x) - H(x|y)$ is the mutual information between the variables of

• $H(.)$ is the Shannon entropy

• β is the rec

$$
R_{\infty}(\mu, \tau, \omega) = \beta I(x; y) - \chi(E; \{x, y\})
$$

- Infinite uses of the channel
- the parties.
- $H(.)$ is the Shannon entropy
- β is the reconciliation parameter accounting for the efficiency of the error correction
- $\chi(E: \{x, y\}) = S(\hat{\rho}_E) S(\hat{\rho}_{E | \{x, y\}})$ is the Holevo information between Eve's system E and the variable $\{x, y\}$
- No-dependence on unitary transformations, Gaussian attacks minimize R
I. Devetak and A. Winter, Proc. R. Soc. A 461, 207 (2005).

F. Furrer, Ph.D., Leibnitz University, Hannover, 2012.

PLOB bound

- (Quantum) telecommunications bound
- Rates can be comparable to DV-QKD also in terms of achievable distance
- We can have end-to-end settings that can lead to QKD networks
- elecommunications bound

et comparable to DV-QKD also in terms

edistance

end-to-end settings that

S. Pirandorsks

Is for aproaching the bound: Refine

For communication and post-processing steps

eription including prac OOUNC

∴ (Quantum) telecommunications bound

∴ Rates can be comparable to DV-QKD also in terms

of achievable distance

∵ We can have end-to-end settings that

⊂ New protocols for aproaching the bound: Refine

the strateg the strategy for communication and post-processing steps
- \Box Detailed description including practical steps: decrease the performance to realistic levels
	- S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Nat. Commun 8,15043 (2017)
	- M. Lucamarini, Z.L. Yuan, J.F. Dynes, et al., Nature 557, 400–403 (2018).
	- Y. Zhang et al., Phys. Rev. Lett. 125, 010502 (2020)
	-
	- M. Ghalaii, P. Papanastasiou, and S. Pirandola, npj Quantum Inf 8, 105 (2022)

Composable Framework Security

 $\theta := \log_2(2\varepsilon_{\rm h}^2 \varepsilon_{\rm cor})$

Secret key length:
 $s_n < n[H(l) - \chi(l:E)_o] - \text{leak}_{ec}$
 $\Delta_{\text{aep}} \simeq 4 \log_2 \left(\sqrt{|\mathcal{L}|} + 2 \right) \sqrt{\log_2(2/\varepsilon_s^2)}$ $s_n \leq n[H(l) - \chi(l:E)_o] - \text{leak}_{ec}$ $-\sqrt{n}\Delta_{\text{aen}}+\theta.$

Overall security:

 $\varepsilon = \varepsilon_{\text{cor}} + \varepsilon_{\text{s}} + \varepsilon_{\text{h}} + p_{\text{ec}} n_{\text{nm}} \varepsilon_{\text{ne}}$

Reconciliation efficiency:

 $H(l) - n^{-1}$ leak_{ec} = $\beta I(k:l)$

Composable framework:

-
-
-
-
-

Comment Controlary CONT:

S. Altriductive

S. Primitives: $\varepsilon = \varepsilon_1 + \cdots + \varepsilon_n$

Function $\varepsilon_i \ll 1$, i.e., $\varepsilon \ll 1$

number of exchanged signals is limmited

S. Pirandola , P. Papanastasiou, arXiv:2301.10270v3

S. Pi

Smooth min-entropy

Classical Guessing probability:

Generalization to Quantum regime:

$$
\sum_{y} \rho(y) \max_{x} \rho(x|y) = \exp(-H_{\min}(X|Y)\rho)
$$

$$
H_{\min}(A|B)_{\rho} = \sup_{\sigma_B \in \mathcal{S}_{\bullet}(B)} \sup \{ \lambda \in \mathbb{R} : \rho_{AB} \leq \exp(-\lambda) I_A \otimes \sigma_B \}
$$

Smoothing (Uncertainty about the probability distribution):

$$
H_{\min}^{\varepsilon}(A|B)_{\rho} := \max_{\tilde{\rho}_{AB} \in \mathscr{B}^{\varepsilon}(\rho_{AB})} H_{\min}(A|B)_{\tilde{\rho}}
$$

M. Tomamichel, arXiv:1504.00233

Uniform Randomness Extraction

- Skipped the EC step (analysis too complicated for this talk)
- Discretized variables
- Variables are n-length strings (finite-size)

S. Pirandola and P. Papanastasiou, arXiv:2301.10270

Uniform Randomness Extraction

$$
Serckey bound: \qquad \varepsilon_s +
$$

$$
\varepsilon_{\rm s} + \frac{1}{2} \sqrt{2^{s_n - H_{\min}^{\varepsilon_{\rm s}}(B^n | E^n)_{\tilde{\rho}} \otimes n}} \le \varepsilon_{\rm sec}
$$

$$
\begin{aligned}\n\text{Secret key length:} \qquad s_n &\le H_{\min}^{\varepsilon_s}(B^n|E^n)_{\tilde{\rho}^{\otimes n}} + 2\log_2(2\varepsilon_h) \\
&\quad - \text{leak}_{\text{ec}} - \log_2(2/\varepsilon_{\text{cor}}) \qquad \qquad \text{Leakage terms from EC} \\
&= H_{\min}^{\varepsilon_s}(B^n|E^n)_{\tilde{\rho}^{\otimes n}} + \log_2(2\varepsilon_h^2 \varepsilon_{\text{cor}}) - \text{leak}_{\text{ec}}\n\end{aligned}
$$

Asymptotic Equipartition property

$$
\Delta_{\rm{aep}} \simeq 4 \log_2 \left(\sqrt{\aleph} + 2\right) \sqrt{\log_2(2/\varepsilon_{\rm{s}}^2)}
$$

Discretisation: connection with the EC

Asymptotic rate with composable terms

Channel Parameter Estimation

$$
V_{\text{Cov}} = \frac{1}{V_0 m} \sigma_x^2 \sigma_z^2
$$

Worst-case values:

$$
\left[\begin{smallmatrix} \frac{2}{\sigma_x^2} \\ \frac{\sigma_x^2}{\sigma_x^2} \end{smallmatrix} \right] \coloneqq \sigma_T^2 \qquad \quad T_{\rm wc} \simeq T - w \sigma_T
$$

$$
[\sigma_z^2]_{\rm wc} \simeq \sigma_z^2 + w\sqrt{V_z}
$$

output, signal and noise:

$$
y = \sqrt{\eta T}x + z
$$

$$
\mathit{PE\,Rate:}\\ R^{\mathrm{pe}}_{\infty}=\beta[I]_{\hat{\mathbf{p}}}-[\chi_{\rho}]_{\mathbf{p}_{\mathrm{wc}}}
$$

Preparation Noise Scheme

- Modelling imperfections due to cheap light sources e Scheme
• Modelling imperfections due to cheap
light sources
• v preparation noise
• m preparation losses
• Noise and losses are trusted
• We assume a calibrated system (no PE
for η and ν)
- ν preparation noise
- η preparation losses
-
- We assume a calibrated system (no PE for η and ν)

Indoors environment

- ϕ irradiance angle (receiver's normal)
- $\Phi_{1/2}$ beam's half-power semi-angle
- ψ incidence angle
- Ψ_c receiver's FOV
- d distance between receiver-transmitter
- X hight of the room
- Y room's dimension
- - not dependent on FOV
	- **Isotropic**
	- Noise $\sim p_n$ (spectral irradiance)

Light from windows:

- Modelled in free-space studies
- windowless room assumption
- Light from artificial sources:
- vient light:

 not dependent on FOV

 Isotropic

 Noise $\sim p_n$ (spectral irradiance)

 Modelled in free-space studies

 windowless room assumption

 from artificial sources:

 dependent on receiver's parameters

	- noise from reflections

O. Elmabrok and M. Razavi, J. Opt. Soc. Am. B 35, 197-207 (2018) O. Elmabrok, M. Ghalaii, and M. Razavi, J. Opt. Soc. Am. B 35, 487-499 (2018)

Indoors environment

•
$$
\phi
$$
 irradiance angle (receiver's normal)

- $\Phi_{1/2}$ beam's half-power semi-angle
- ψ incidence angle
- \cdot $\,$ $\,$ $\rm \Psi_{c}$ receiver's FOV
- d distance between receiver-transmitter
- X hight of the room
- room's dimension
- \bullet A receiver's area

$$
H_{\rm DC} = \begin{cases} \frac{A(m+1)}{2\pi d^2} \cos(\phi)^m T_s(\psi) \times g(\psi) \cos(\psi) & 0 \le \psi \le \Psi_c \\ 0 & \text{elsewhere} \end{cases}
$$

Directivity number:
$$
m = \frac{-\ln 2}{\ln(\cos(\Phi_{1/2}))}
$$

Concentrator function: $g(\psi) = \left\{\sin^2 \psi\right\}$ 1
 $H_{\text{DC}} = \begin{cases} \frac{A(m+1)}{2\pi d^2} \cos(\phi)^m T_s(\psi) \times g(\psi) \cos(\psi) & 0 \le \psi \le \Psi_c, \\ 0 & \text{elsewhere} \end{cases}$

Directivity number: $m = \frac{-\ln 2}{\ln(\cos(\Phi_{1/2}))}$

pncentrator function: $g(\psi) = \begin{cases} \frac{r^2}{\sin^2(\psi_c)} & 0 \le \psi \le \Psi_c, \\ 0 & \psi > \Psi_c. \end{cases}$

> O. Elmabrok and M. Razavi, J. Opt. Soc. Am. B 35, 197-207 (2018) O. Elmabrok, M. Ghalaii, and M. Razavi, J. Opt. Soc. Am. B 35, 487-499 (2018)

Results:

Reverse reconciliation-Heterodyne detection

Conclusion and Outlook • Trade-off: higher repetition rates vs access to the receiver from any angle
• Trade-off: higher repetition rates vs quality-focus of the beam
• Trade-off: higher repetition rates vs quality-focus of the beam
• Receiver's

- Trade-off: higher repetition rates vs access to the receiver from any angle
- Trade-off: higher repetition rates vs quality-focus of the beam

Future work:

- Receiver's Area and repetition rate connection
- FOV and artificial light noise connection (geometry of the room)
-

Thank You !