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Motivation & Constraints

• QKD security proofs often assume
ideal classical post-processing —
unrealistic in in-field deployments.

• Devices like drones, sensors, and IoT
nodes face strict limits on memory,
power, computation, space and
weight.

• CV-QKD offers a compact,
telecom-ready alternative to DV-QKD,
ideal for such constrained platforms.
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Motivation & Constraints

• Devices like drones, sensors, and IoT
nodes face strict limits on memory,
power, computation, space and
weight.

• CV-QKD offers a compact,
telecom-ready alternative to DV-QKD,
ideal for such constrained platforms.

• These networks are short-range and
latency-sensitive — long-distance
communication is not the main
goal.

• CV-QKD performs well at
short distances, offering high
mutual information — but
this requires fine digitization
and non-binary LDPC
codes, increasing resource
demands.

• Accurate models linking
leakage, runtime, and
memory are key to
performance analysis and
system design.
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Rate with Finite-Size Reconciliation Efficiency and Composable Terms

R := pec

( n
N

) [
ζ I(x : y) − χϵec(x : E ) −

∆ϵs
aep√
n + θ

n

]

ϵ = ϵs + ϵh + 2pecϵpe + ϵec + ϵcor, and ϵec := 1 − pec(1 − ϵcor).

S. Pirandola and P. Papanastasiou, Phys. Rev. Research 6, 023321 (2024)
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]

• pec: probability of successful error correction.
• n

N : fraction of signals retained after parameter estimation.

• I(x : y): mutual information between the parties (CV domain).
• χ(x : E ): Holevo bound — quantifies Eve’s information.
• ∆ϵs

aep: penalty from the Asymptotic Equipartition Property (AEP).
• θ: correction from non-ideal amplification and verification.
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Rate with Finite-Size Reconciliation Efficiency and Composable Terms

R := pec

( n
N

) [
ζ I(x : y) − χϵec(x : E ) −

∆ϵs
aep√
n + θ

n

]

• ζ = ζdigit · ζleak: reconciliation efficiency.
• ζdigit := I(k:y)

I(x :y) — reduction due to digitization.
• ζleak := 1 − ∆ϵec

leak
I(k:y)

√
n — reduction due to finite-size leakage.

S. Pirandola and P. Papanastasiou, Phys. Rev. Research 6, 023321 (2024)
M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)

4/7



Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
∆ϵec

leak :=
√

V (k|y) · Φ−1(1 − ϵec)

log2 |M| ≤ nH(k|y) + ∆ϵec
leak

√
n + O(log2 n)

M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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∆ϵec

leak :=
√

V (k|y) · Φ−1(1 − ϵec)

log2 |M| ≤ nH(k|y) + ∆ϵec
leak

√
n + O(log2 n)

• H(k|y): conditional Shannon entropy of the digitized key given the other party’s
variable.

M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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Tight Finite-Size Leakage Bound
∆ϵec

leak :=
√

V (k|y) · Φ−1(1 − ϵec)

log2 |M| ≤ nH(k|y) + ∆ϵec
leak

√
n + O(log2 n)

• V (k|y): the conditional entropy variance — quantifies fluctuations in the
information content conditioned on the other party’s variable, and governs
second-order deviation from the Shannon limit.

M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log2 |M| ≤ nH(k|y) + ∆ϵec

leak
√

n + O(log2 n)

• Φ−1(1 − ϵec): quantile of the Gaussian tail — set by the error correction success
probability.

M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log2 |M| ≤ nH(k|y) + ∆ϵec

leak
√

n + O(log2 n)

• O(log2 n): logarithmic correction term due to finite sample size.

M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log2 |M| ≤ nH(k|y) + ∆ϵec

leak
√

n + O(log2 n)

• d : number of bits per symbol — defines the alphabet size used in non-binary
LDPC codes.

• Leakage is quantified via the syndrome alphabet size: log2 |M| = ndRsynd
• Rsynd: the syndrome rate of the LDPC code — determined by code structure.

• Dense matrix estimate: Mcode := n2dRsynd
• Sparse CRS format (with d̄v = 2):

Msparse = 2nd + 2n⌈log2(n)⌉ + (nRsynd + 1) ⌈log2(2n)⌉

P. Papanastasiou et al., arXiv:2504.06384v1
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Leakage, Storage, and Rate Trade-offs

• At fixed low loss, DR with
homodyne yields high rates at
small block sizes.

• As loss increases, ζ improves
linearly, but leakage also
increases.
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Leakage, Storage, and Rate Trade-offs

• Block size is a key driver:
larger n boosts rate, but also
memory and leakage.

• Trade-off: Higher pec improves
the final rate but comes at the
cost of increased leakage and
memory footprint.
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Leakage, Storage, and Rate Trade-offs

• Encoding is lightweight:
memory requirements remain
within a few MB — suitable for
constrained transmitters.

• Storage growth remains
near-linear, even in sparse
format; simulated points match
theory.
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Summary and Outlook

• CV-QKD is ideally suited for constrained, short-range platforms — but
demands adapted post-processing.

• We developed a composable key rate with finite-size leakage bounds and
explicit memory modeling.

• Non-binary LDPC codes in sparse format, optimized for resolution and SNR,
enable near-optimal efficiency with MB-scale memory — supporting lightweight
encoding on constrained devices.

• Our results show that rate, leakage, and memory are tightly coupled — enabling
trade-off-aware design for real CV-QKD deployments.

• Beyond security, the rate also benchmarks runtime — guiding simulations of error
correction in constrained quantum platforms.
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• We developed a composable key rate with finite-size leakage bounds and
explicit memory modeling.

• Non-binary LDPC codes in sparse format, optimized for resolution and SNR,
enable near-optimal efficiency with MB-scale memory — supporting lightweight
encoding on constrained devices.

• Our results show that rate, leakage, and memory are tightly coupled — enabling
trade-off-aware design for real CV-QKD deployments.

• Beyond security, the rate also benchmarks runtime — guiding simulations of error
correction in constrained quantum platforms.
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