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Motivation & Constraints

= QKD security proofs often assume

ideal classical post-processing —
unrealistic in in-field deployments.
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Motivation & Constraints

Devices like drones, sensors, and loT
nodes face strict limits on memory,
power, computation, space and
weight.

CV-QKD offers a compact,

telecom-ready alternative to DV-QKD,
ideal for such constrained platforms.
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Motivation & Constraints

Coherent States in Phase Space
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Motivation & Constraints

Devices like drones, sensors, and loT

nodes face strict limits on memory,
power, computation, space and
weight.

CV-QKD offers a compact,

telecom-ready alternative to DV-QKD,
ideal for such constrained platforms.

These networks are short-range and
latency-sensitive — long-distance
communication is not the main

goal.

CV-QKD performs well at
short distances, offering high
mutual information — but
this requires fine digitization
and non-binary LDPC
codes, increasing resource
demands.

Accurate models linking
leakage, runtime, and
memory are key to
performance analysis and
system design.
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Rate with Finite-Size Reconciliation Efficiency and Composable Terms

R = pec <,'\7,) [C I(x:y) = x=(x: E) = ==+ —

€ =€+ €y + 2Pecfpe + €ec + €cor, and €ec i =1 — pec(l - 6t:or)-

S. Pirandola and P. Papanastasiou, Phys. Rev. Research 6, 023321 (2024)
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m pPec: probability of successful error correction.

= 4 fraction of signals retained after parameter estimation.
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Rate with Finite-Size Reconciliation Efficiency and Composable Terms

ASep | 0

R = pec <,'\7,> [C/(Xry)—xeec(x : E) = N

m pPec: probability of successful error correction.

ﬁ fraction of signals retained after parameter estimation.

: y): mutual information between the parties (CV domain).

X(x : E): Holevo bound — quantifies Eve's information.
= A, penalty from the Asymptotic Equipartition Property (AEP).

0: correction from non-ideal amplification and verification.

S. Pirandola and P. Papanastasiou, Phys. Rev. Research 6, 023321 (2024)
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Rate with Finite-Size Reconciliation Efficiency and Composable Terms
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* ( = (digit - Cleak: reconciliation efficiency.
" Cyigit := % — reduction due to digitization.

" Gieak = 1 — 547 — reduction due to finite-size leakage.
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S. Pirandola and P. Papanastasiou, Phys. Rev. Research 6, 023321 (2024)
M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound

Az =/ V(kly) - ©7H(1 — eec)

log, | M| < nH(kly) + Ajgiv/n + O(log, n)

leak

M. Tomamichel et al., Quantum Inf. Process. 16, 280 (2017)
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= H(kl|y): conditional Shannon entropy of the digitized key given the other party’s
variable.
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Tight Finite-Size Leakage Bound

Ay =/ V(Kly) - ©7H(1 — eec)

log, [M| < nH(k|y) 4+ Ajg/n+ O(log, n)

lea

= V(k|y): the conditional entropy variance — quantifies fluctuations in the
information content conditioned on the other party’s variable, and governs
second-order deviation from the Shannon limit.
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log, [M| < nH(kly) + Ajigv/n + O(log, n)

leak
= ®71(1 — ) quantile of the Gaussian tail — set by the error correction success

probability.
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log, M| < nH(k|y) + Al v/n + O(log, n)

leak

= O(log, n): logarithmic correction term due to finite sample size.
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Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log M| < nH(kly) + Ajgv/n + O(log, n)

lea

= d: number of bits per symbol — defines the alphabet size used in non-binary
LDPC codes.

= Leakage is quantified via the syndrome alphabet size: log, |[M| = ndRyyng

* Rsnd: the syndrome rate of the LDPC code — determined by code structure.

P. Papanastasiou et al., arXiv:2504.06384v1
5/7



Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log, |M| < nH(kly) + Ajggv/n + O(log, n)

= d: number of bits per symbol — defines the alphabet size used in non-binary
LDPC codes.

= Leakage is quantified via the syndrome alphabet size: log, |[M| = ndRyyng

* Rsnd: the syndrome rate of the LDPC code — determined by code structure.

= Dense matrix estimate: Mcode := n°dRsynd

P. Papanastasiou et al., arXiv:2504.06384v1
5/7



Leakage Bounds and Storage Requirements for Non-Binary LDPC Codes

Tight Finite-Size Leakage Bound
log M| < nH(kly) + Ajgv/n + O(log, n)

lea

= d: number of bits per symbol — defines the alphabet size used in non-binary
LDPC codes.

= Leakage is quantified via the syndrome alphabet size: log, |[M| = ndRyyng

* Rsnd: the syndrome rate of the LDPC code — determined by code structure.

= Dense matrix estimate: Mcode := n°dRsynd

= Sparse CRS format (with d, = 2):

Msparse — 2nd + 2n“0g2(n)‘| + (nRSynd + 1) [Iog2(2n)]

P. Papanastasiou et al., arXiv:2504.06384v1
5/7



Leakage, Storage, and Rate Trade-offs

= At fixed low loss, DR with
homodyne yields high rates at
small block sizes.

Secret Key Rate (bits/use)
SNR/ V (SNU)

= As loss increases, ( improves

linearly, but leakage also

INCreases.
0.03 3 _ 010 10
a a ~
Z0.02 25 2 >
o == Boos 5 %
£o.01 1= £ -
g 8
~ 0.00 0 0.00
00 01 02 03 04 05 06 10° 10°
10 6
] —
g i
5 0.5 s
4 RE
5 b
0.0 0 s s
00 01 02 03 04 05 06 10 10
Loss (dB) N
Fig. 1 — vs. Loss Fig. 3 — vs. Block Size

P. Papanastasiou et al., arXiv:2504.06384 6/7



Leakage, Storage, and Rate Trade-offs

= Block size is a key driver:
larger n boosts rate, but also

SNR/ V (SNU)

memory and leakage.

Secret Key Rate (bits/use)

= Trade-off: Higher p.. improves

the final rate but comes at the

cost of increased leakage and

0 0.03 3 _ o010 10
memory footprint. g _ 2 z
Z0.02 25 = )
o == Boos 5 %
£o.01 1= £ -
E <
- 0.00
0000 01 02 03 oa 05 05 10° 10°
1.0 6
O _
g B
405 f
.4 R E!
5 X
0.0 o o 6
00 01 02 03 04 05 06 10° 10
Loss (dB) N
Fig. 1 — vs. Loss Fig. 3 — vs. Block Size

P. Papanastasiou et al., arXiv:2504.06384 6/7



Leakage, Storage, and Rate Trade-offs
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= CV-QKD is ideally suited for constrained, short-range platforms — but
demands adapted post-processing.

= We developed a composable key rate with finite-size leakage bounds and
explicit memory modeling.

= Non-binary LDPC codes in sparse format, optimized for resolution and SNR,
enable near-optimal efficiency with MB-scale memory — supporting lightweight
encoding on constrained devices.

= Our results show that rate, leakage, and memory are tightly coupled — enabling
trade-off-aware design for real CV-QKD deployments.

= Beyond security, the rate also benchmarks runtime — guiding simulations of error
correction in constrained quantum platforms.
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