
IN REVIEW, MAY 2023 1

Mitigating IoT Botnet DDos Attacks through MUD
and eBPF based Traffic Filtering

Angelo Feraudo , Diana Andreea Popescu , Poonam Yadav , Richard Mortier , and Paolo Bellavista

Abstract—As the prevalence of Internet-of-Things (IoT) devices
becomes more and more dominant, so too do the associated
management and security challenges. One such challenge is the
exploitation of vulnerable devices for recruitment into botnets,
which can be used to carry out Distributed Denial-of-Service
(DDoS) attacks. The recent Manufacturer Usage Description
(MUD) standard has been proposed as a way to mitigate this
problem, by allowing manufacturers to define communication
patterns that are permitted for their IoT devices, with enforce-
ment at the gateway home router. In this paper, we present
a novel integrated system implementation that uses a MUD
manager (osMUD) to parse an extended set of MUD rules, which
also allow for rate-limiting of traffic and for setting appropriate
thresholds. Additionally, we present two new backends for MUD
rule enforcement, one based on eBPF and the other based on the
Linux standard iptables. The reported evaluation results show
that these techniques are feasible and effective in protecting
against attacks and in terms of their impact on legitimate traffic
and on the home gateway.

Index Terms—Distributed DoS, Botnet, IoT, Security, Network
and Systems Management, eBPF, MUD.

I. INTRODUCTION

AS the use of Internet-of-Things (IoT) devices, in par-
ticular in homes and in open deployment environments,

continues to increase, numerous associated security challenges
have emerged. The particular challenge we address in this
work is the hijacking of IoT devices for recruitment into
botnets. Such devices are Internet-connected by design, typi-
cally through high-bandwidth home broadband connections,
and are often not directly and actively used by residents.
In the hijacking process of IoT devices, attackers exploit
vulnerabilities in the security of the device, gain unauthorized
access, and take control of the device. Once the device is
under the attacker’s control, it can be used to perform a range
of malicious activities, such as generating spam and stealing
sensitive information.

One common method used by bots to target IoT devices
is through brute-force attacks on default or weak login cre-
dentials. This enables attackers to gain access to the device
and take control of it. Furthermore, IoT devices that are
not regularly updated may have known vulnerabilities that
attackers can exploit to gain control. As a consequence, once

A. Feraudo and P. Bellavista are with the Department of Computer
Science and Engineering, University of Bologna, Bologna, 40136 Italy (e-
mail: name.surname@unibo.it)

D. A. Popescu and R. Mortier are with the Department of Computer Science
and Technology, University of Cambridge, Cambridge, CB3 0FD UK (email:
diana.popescu@cl.cam.ac.uk and richard.mortier@cl.cam.ac.uk)

P. Yadav is with the Department of Computer Science, University of York,
York, YO10 5GH UK (email:poonam.yadav@york.ac.uk)

an IoT device is hacked and recruited into a botnet, its intended
function will continue to work, but it can also generate massive
amounts of network traffic as part of a Distributed Denial-of-
Service (DDoS) attack.

Ideally, IoT devices would not be as susceptible to hacking,
but as long as they remain vulnerable, one approach to
detecting and mitigating the effects of hacked devices is to
monitor and control the traffic they generate. The IETF has
attempted to address this issue through RFC 8520, which is
the “Manufacturer Usage Description Specification” [1], [2].
This specification allows IoT device manufacturers or service
providers to provide a machine-readable description of the
network interaction in which the device should engage. This
information can be used by the network home router to enforce
restrictions on devices’ network activities. Consequently, a
hacked device cannot be effectively used as part of a botnet
because it will not be allowed to generate arbitrary Internet
traffic.

Specifically, these MUD files allow manufacturers or service
providers to specify to the local network all the permitted
incoming and outgoing source/destination addresses, enabling
fine-grained traffic filtering of each IoT device. However, it
does not allow any further constraint, for example on the rate
or mix of traffic generation. Further, implementing the spec-
ified constraints on relatively resource-limited home routers
requires efficient means to intercept and control network traffic
as the number of constraints rises in proportion to the number
of IoT device types in the home. Thus, the MUD purpose is
to restrict traffic while enabling IoT manufacturers to provide
long-term support and updates for their devices, supporting
and facilitating the scalable deployment and management of
IoT ecosystems.

This paper advances the state-of-the-art of the related work
in the field by proposing the following original contributions:

1) we propose extensions to the existing MUD standard
that enable fine-grained rate-limiting of traffic from con-
trolled devices, alongside means to estimate the relevant
parameter values in realistic deployments (§II);

2) we extend the existing osMUD [3] implementation so
that it can be deployed within a virtual machine setup
for development and testing or within a real-world
setup (§III); and

3) we develop and integrate new backends for osMUD by
using Linux standard iptables firewalls and eBPF [4]
that support more efficient implementation of these
constraints as expressed in MUD files (§IV).

In addition to the above original contributions (to the best
of our knowledge, the presented prototype is the first imple-

ar
X

iv
:2

30
5.

02
18

6v
1

 [
cs

.N
I]

 3
 M

ay
 2

02
3

https://orcid.org/0000-0002-9727-0861
https://orcid.org/0000-0002-2435-9603
https://orcid.org/0000-0003-0169-0704
https://orcid.org/0000-0001-5205-5992
https://orcid.org/0000-0003-0992-7948

IN REVIEW, MAY 2023 2

mentation proposed for the employment of MUDs to mitigate
IoT DDoS attacks), the paper contributes to the literature in
the field by reporting novel quantitative performance results on
how our design/implementation choices permit to limit high
traffic surges caused by a Botnet attack [5], demonstrating
their effectiveness (§V).

II. EXTENDING MUD

According to the MUD standard [1], a MUD deployment
consists of three architectural building blocks: (i) the device
behaviour description (MUD file), (ii) a uniform resource
locator (MUD URL) and (iii) a mechanism for local man-
agement systems that uses the URLs to request description
files. In addition, the standard defines two main components
that guarantee deployment and use of MUD files: the MUD
file server that makes description files available, and the MUD
manager, which requests and receives description files to and
from the MUD file server.

The workflow between these blocks requires the thing or
device to emit the MUD URL indicating where the corre-
sponding MUD file is hosted. For this purpose, three pro-
tocol extensions have been defined by the standard: (i) in
DHCP, a reserved option in request packets is used; (ii) in
X.509 through a certificate extension; and (iii) in Link Layer
Discovery Protocol (LLDP) by exploiting a subtype defined
in RFC 7042. Once a MUD file has been retrieved, the
MUD manager validates and enforces the Access Control Lists
(ACLs) produced on the corresponding firewall.

A. The MUD data model

The MUD data model consists of a YANG based file
serialised in JSON [6]. The YANG language provides a simple
way to model different types of data, such as configuration data
and notifications for network management protocols. There are
only three YANG schema components that are serialised in
a MUD file: (i) ietf-mud allows to verify MUD file validity
as well as the policy to and from the device; (ii) ietf-access-
control-list [7] defines Access Control Lists by using a YANG
data model; (iii) ietf-acldns allows the DNS matching criteria.

The ACL model feature involves the main network and
transport layer protocols (ipv4, ipv6, udp, tcp, icmp). The
actions included in this model are ACCEPT or DROP, the
REJECT action can be interpreted by the MUD Manager as
DROP. For the osMUD manager, REJECT is the default action
to deny device communications towards any kind of domain
not included in its MUD file. Hence, the MUD file model
allows Manufacturers to define a set of white lists that describe
the services needed by their devices to work properly.

B. A rate-limiting extension

The MUD data model extension requires inclusion of a new
field in the MUD file related to rate-limits. The MUD file
contains Access Control Lists (ACLs) as defined in IETF RFC
8519 [7]. Each of them comprises a list of rules known as
Access Control Entries (ACEs), which correspond to a group
of match criteria and a group of actions. According to the

” a c t i o n s ” : {
” packe t − r a t e ” : ” 5 0 / second ” ,
” byte − r a t e ” : ”50 kb / minu te ” ,
” f o r w a r d i n g ” : ” a c c e p t ”

}

Fig. 1. The actions object after rate-limits addition.

standard, a rate-limit operation belongs to the action group of
an ACE. Therefore, we add rate-limits defined by packet-rate
and byte-rate along with the forwarding field in the actions
object, as shown in Fig. 1.

Manufacturers may use these fields to define rate-limits
using different metrics, such as second, minute, hour, and
day. As these fields belong to the action group, manufacturers
can set them for each allowed communication enabling a
more precise and targeted approach. Furthermore, as shown
in Fig. 1, they do not necessarily have to be the same in both
packet- and byte-rates. We discuss the implementation of our
extension in Section III.

C. Learning thresholds

To tune our proposed extension for real deployment envi-
ronments, we must extract information to produce valid upper
bounds for outgoing traffic. We have performed this analysis
on the widely accepted data gathered by Ren et al. [8]. This
includes different PCAP files containing network traffic gener-
ated by 81 IoT devices of six different categories: appliances,
smart-hubs, cameras, audio home-automation, and televisions.
Those PCAP files were processed to compute the amounts of
packets and bytes sent and received by each device in a given
time window, defined as follows: the first packet timestamp
defines the window start time (𝑤𝑠𝑡); if the packet falls within
the window (𝑤𝑠𝑡 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒), the packet/byte counters
corresponding to this window are incremented; otherwise,
while that packet cannot be included within a window, the
next window start time is updated with the end time of the
previous one (𝑤𝑠𝑡𝑡 ← 𝑤𝑠𝑡𝑡−1 + 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒). We analyzed
the data using a window of 60 seconds.

For the sake of brevity, in the paper we define and validate
MUD files for two device categories: appliances and smart-
hubs. The former includes devices that assist home activities,
such as cooking, cleaning and printing. The latter involves
access points or controllers that provide Internet access to
IoT devices, whose communications may take place via either
proprietary or low-range protocols. Moreover, considering our
initial assumptions, i.e., preventing Botnet attacks generated
from IoT devices, the analysis reports only data related to
devices’ outgoing traffic.

Table I summarises the results of our analysis in terms of
devices’ outgoing traffic in a window of 60 seconds. The TCP
and UDP columns refer to the average of TCP and UDP
packets/bytes outgoing traffic during device activities, thus do
not consider idle periods (e.g., during the night). Similarly, the
other columns indicate the network traffic peaks average for
each category. The data show that devices in both considered

IN REVIEW, MAY 2023 3

TABLE I
APPLIANCES AND SMART-HUBS OUTGOING TRAFFIC IN 60 SECONDS

Category TCP TCP Max UDP UDP Max

appliances (pkts) 36.7 223.2 5.033 140.28
smart-hubs (pkts) 21.3 1716.8 9.63 152.38
cameras (pkts) 62.2 1471.34 94.40 7863.0
audio (pkts) 52.01 6687.5 293.6 1837.63
home-aut (pkts) 5.20 702.3 14.51 127.5
tv (pkts) 128.9 7560 33.33 729.3

appliances (bytes) 2350.7 36761.2 1446 24390.2
smart-hubs (bytes) 2375.3 177385.12 1970 38507.9
cameras (bytes) 75065 1257726.67 81198 6727372.3
audio (bytes) 14619.7 3430505.1 18758.1 141291.4
home-aut (bytes) 1084.5 56560.5 3224.63 24966.8
tv (bytes) 27525.7 2503001 6734.5 80519.3

categories, appliances and smart-hubs, require TCP to work
properly.

We define two MUD files for each device category analyzed,
describing allowed reliable communications and including two
volumetric policies, namely “peaks” and “averages”. Hence,
looking at Table I, MUD files using “peaks” as outgoing traffic
threshold define 250 packets per minute and 40 kB per minute
for devices belonging to appliances category, and 1720 packets
per minute and 180 kB per minute for smart-hubs devices. On
the other hand, MUD files using “average” outgoing traffic
during device activities define 40 packets per minute and 3 kB
per minute for appliances, and 22 packets per minute and 3 kB
per minute for smart-hubs. It is worth noting that selected
limits concern all the devices in the categories analysed.
However, as described in section II-B, the proposed MUD
data model allows manufacturers to define multiple limits for
each device, i.e., one for each allowed destination. Defining a
limit per destination will create fine-grained policies for each
device, preventing DoS attacks originating from devices whose
category aggregate rate limit is higher than their peak rate.

We leverage this analysis to establish the rate limits that we
use to validate the effectiveness of our MUD model proposal
for both normal and abnormal IoT network traffic.

III. LIBERATING MUD
Open Source MUD (osMUD) [3] is an open-source im-

plementation of MUD manager, developed by a consortium
of device manufacturing and network security companies. As
shown in Figure 2, the MUD manager is designed to be easily
built, deployed, and run on Open Wireless Router (OpenWRT)
platform. The implementation requires a customised version
of dnsmasq to enable MUD URL extraction, provide network
infrastructure services, and minimise resource usage.

From the MUD data model perspective, the current im-
plementation does not support MUD file rules for lateral
movement attacks (e.g., same-manufacturer, controller, my-
controller) [1]. Thus, after compromising a device inside the
MUD compliant network, adversaries can progressively move
through other systems, searching for targeted key data and
assets, which are exploited to gain access to other hosts or
applications within the network.

DHCP
(MUD-URL)

dnsmasq

Internet

MUD
Enabled

IoT devices
DHCP Server DNS

MUD File Server

MUD
Manager

Router OpenWRT

Firewall

Fig. 2. osMUD Architecture

Figure 3 shows the deployment of our prototype: a Linux
Virtual Machine (VM) acting as a router and running an
osMUD version using the extended MUD parser described
in section II-B (thereafter VMMUD), an external MUD file
server and other VMs used for the evaluation. After installing
on the VMMUD environment the libraries needed by osMUD
to properly work, we built osMUD in its generic form.
However, additional steps are required to deploy it correctly.
Indeed, although the osMUD designers provided all necessary
tools to build this version, there is still no support for a
firewall other than OpenWRT, hence, the need to explore rule
enforcement methods for commonly used firewalls.

To this end, the osMUD Manager structure allows de-
velopers to define additional rule enforcement methods by
exploiting two main folders containing firewall integration
code. The first includes several scripts that focus on rules
enforcement and removal in an OpenWRT firewall, while the
second folder is provided as a sample code modelling for
new firewall integration. Hence, we consider these folders as
containers of an adapter that enables the MUD manager’s
independence from the underlying firewall (marked with red
dotted line in Figure 4). We develop two new adapters which
are described in Section IV. The first one, eBPF-IoT-MUD
leverages eBPF for rule enforcement, and the second adapter
leverages iptables. Using either of these two new adapters, our
system can be deployed on a standard Linux-based router or
other constrained devices such as RaspberryPi.

To store and enforce rules produced from the new rate limit
fields introduced in Section II, the osMUD manager parsing
procedure needs to be updated accordingly. To achieve this,
the MUD file parser (green block in Figure 4) analyses a new
string of symbols in the group of action. Moreover, in order
to properly store features enabling rate-limit operations, the
parser uses an extended version of data types modelling MUD
rules. Once the MUD manager receives these customised data
types from the parser, it enforces the extended rules on the
selected underlying firewall mechanism.

IV. ADAPTING MUD

MUD enforcement is carried out at the router using a
backend that enables control over traffic. After introducing
eBPF, XDP (eXpress Data Path) and tc (§IV-A), we describe
in more detail the structure of an eBPF program (§IV-B), and
then describe how we use eBPF and XDP in one backend
implementation (§IV-C). For comparison purposes, we also

IN REVIEW, MAY 2023 4

MUD URL extraction

iptables/ebpf
DNSMASQ

DHCP
Server DNS

OSMUD

dhcpmasq.txt

DROPIoT-1

VirtualBox Environment

Host Machine

iot-interface

SERVER

netbneta

virtual-internet

MUD File
Server

ACCEPT

VMMUD

Rules
enforcement

(a) Output flow

MUD URL extraction

iptables/ebpf
DNSMASQ

DHCP
Server DNS

OSMUD

dhcpmasq.txt

DROPIoT-1

VirtualBox Environment

Host Machine

iot-interface

SERVER

netbneta

virtual-internet

MUD File
Server

ACCEPT

VMMUD

Rules
enforcement

(b) Input flow

Fig. 3. Network deployment flows
osMUD

MUD
Manager

MUD
Parser

OpenWRT

LINUX
EBPF

IPTABLES

UCI Firewall

...

Fig. 4. osMUD architectural blocks

describe a second adapter that uses the Linux iptables firewall
support (§IV-D).

A. eBPF, XDP, and tc

The extended Berkeley Packet Filter (eBPF) is a set of in-
structions and a virtual machine (VM) for executing programs
written in restricted C-language [9], [10]. An eBPF program is
“attached” to a specific code path in the kernel. When the code
path is traversed, any attached eBPF programs are executed.
They can be installed into the Linux kernel without modifying
the kernel source code.

Thus, eBPF enables a variety of applications. For instance,
an eBPF program can be attached to a network socket to
perform tasks such as traffic classification or packet filtering.
Furthermore, eBPF is useful for debugging the kernel and
carrying out performance analysis, since eBPF programs can
access kernel data structures.

The eXpress Data Path (XDP) [11] uses eBPF to enable fast
packet processing at the lowest layer of the Linux network
stack, immediately after a packet is received. XDP is the
lowest layer of the Linux kernel network stack. It is present
on the RX path, inside a device’s network driver, meaning
that it can process only the incoming packets. It allows packet
processing at the earliest stage in the network stack, making it
suitable for applications such as DDoS mitigation. The context

received by an XDP program is defined by the type struct
xdp_md. The action returned by an XDP program is one
of the following actions: the packet is dropped and raise an
exception (XDP_ABORTED), dropped silently (XDP_DROP),
passed along to the kernel stack (XDP_PASS), retransmit on
the same interface (XDP_TX) or redirect to another target (for
example, to another interface) (XDP_REDIRECT).

Finally, the TC layer allows processing both egress traffic
(transmitting packets) and ingress traffic (receiving packets).
Traffic control policies on Linux are applied at this layer, with
different queuing disciplines (qdisc) being configured for the
different packet queues available in the system. Additionally,
there is the possibility to add filters to drop or modify packets.

B. eBPF program structure

eBPF programs can be loaded during runtime inside the
Linux kernel, and they can interact with different kernel
elements, such as kprobes, perf events, sockets and routing
tables. An eBPF program can be attached to different network
hooks, eXpress Data Path (XDP) and Traffic Control (TC)
(Figure 5). It is executed whenever an event appears on the
interface it is attached to. For example, in the case of an
eBPF program that does custom packet processing, it will be
executed whenever a packet is sent or received.

eBPF programs have a program type which defines
which layer or subsystem of the Linux kernel the eBPF
program is attached to. The type provides information
about: (i) what is the input passed to it (its context), (ii)
which helper functions it is allowed to use, and (iii) to
which kernel hook it will be attached to. For example,
BPF_PROG_TYPE_SOCKET_FILTER is a program that does
socket filtering, while BPF_PROG_TYPE_XDP is program
that is attached to the eXpress Data Path hook. A different
category of programs are those for kernel tracing and moni-
toring.

eBPF maps are key-value stores, where the keys and values
can be user-defined data structures and types. Maps can be
accessed from userspace as well as from eBPF programs
loaded in the kernel, which makes them a powerful tool for
communication between the two. Two common examples are
BPF_MAP_TYPE_HASH (which is similar to a hash table)

IN REVIEW, MAY 2023 5

Fig. 5. Linux kernel network stack showing XDP/TC [10]

and BPF_MAP_TYPE_ARRAY (where entries are indexed by
a number similar to an array). eBPF programs can use helper
functions, such as functions for interacting with maps, for
processing packet headers and others.

An eBPF program returns a code, which depends on the
program type. For example, an XDP program returns a code
indicating what action regarding the packet after processing
(pass packet, drop packet, redirect on another interface, re-
transmit on the interface it came from). Similarly, TC returns
different codes (deliver the packet in the TC queue, drop
packet, reclassify packet etc).

The eBPF in-kernel verifier performs a number of checks.
The first check ensures that the eBPF program terminates and
does not contain any loops. In the second check, the verifier
simulates the execution of the eBPF program one instruction at
a time to ensure that register and stack state are valid. Also, if
pointer arithmetic is allowed, all pointer access are checked for
type, alignment, and bounds violations. Uninitialised registers
cannot be read. Certain registers are marked as unreadable,
and checks are carried out to ensure that the read-only frame-
pointer is not being written to. Lastly, the verifier restricts
which kernel functions can be called from the eBPF programs,
and which data structures can be accessed depending on their
type.

C. eBPF-IoT-MUD adapter

The osMUD manager can use the eBPF-IoT-MUD adapter
to enforce MUD rules in the lowest layer of the Linux kernel
network stack. We implemented eBPF-IoT-MUD as an XDP
program, attached to the XDP hook.

There are two programs: xdpfw_from_device and
xdpfw_to_device. The xdpfw_from_device is in-
serted on the LAN interface of the home router (Figure 3a).
The xdpfw_to_device is inserted on the WAN interface
of the home router (Figure 3b). The xdpfw_from_device

s t r u c t f l ow key ipv4 {
u8 i p a d d r e s s s r c [4] ;
u8 i p a d d r e s s d s t [4] ;

enum a d d r t y p e t y p e ;
enum p o r t p r o t o c o l p r o t o ;

u16 p o r t ;
} ;
s t r u c t f l ow key ipv6 {

u8 i p a d d r e s s s r c [1 6] ;
u8 i p a d d r e s s d s t [1 6] ;

enum a d d r t y p e t y p e ;
enum p o r t p r o t o c o l p r o t o ;

u16 p o r t ;
} ;
s t r u c t c o u n t e r s r a t e {

u64 p a c k e t s ;
u64 b y t e s ;
u64 m a x p k t r a t e ;
u64 m a x b y t e s r a t e ;

} ;

Fig. 6. eBPF-IoT-MUD maps

is the program used to filter and/or rate-limit the connec-
tions made by the IoT devices to the Internet, while the
xdpfw_to_device is the program used to filter and/or rate-
limit the connections from the Internet to the IoT devices. In
this paper, we are focusing only on xdpfw_from_device,
as our aim is to stop DDoS attacks from IoT botnets. We
note that xdpfw_to_device program functions in the same
manner, enforcing MUD rules to prevent unauthorized access
from the Internet to the IoT device in this case, thus mini-
mizing the possibility of compromising an IoT device by an
outside attacker [12].

We implemented a userspace program which attaches or
detaches the programs from the specified network interface,
and that can insert the appropriate MUD rules in allowlists.
There are two allowlists per protocol (IPv4 v4 allowlist
and IPv6 v6 allowlist). The XDP programs use the al-
lowlists to determine whether the packets will be allowed or
dropped. The allowlists are implemented using eBPF maps
(BPF_MAP_TYPE_HASH).

The key and value for the hash map can be seen in
figure 6. The key in the hash map is represented by a structure
flow_ipv4_key (and correspondingly flow_ipv6_key).

The key comprises the destination and source IP addresses
for the from device program, or the source and destination
IP address for the to device program, the destination port for
from device, or the source port for to device, the protocol type
and the type of rule (whether it is a from device or a to device
rule). The type of rule is implicitly specified in the command
line when specifying the type of port (source or destination
port). The value in the hash map is represented by a structure
counters_rate, which records the number of bytes and
the number of packets seen a rule. Additionally, the structure
has a static maximum byte rate and maximum packet rate

IN REVIEW, MAY 2023 6

extracted from the extended MUD file model when the rule
was created and inserted in the map. A default value of zero
means that there is no rate-limit.

Whenever a packet arrives, the headers are parsed (layer
2, layer 3 and layer 4) and a key for the maps is built
using the header information. The first header parsed is
the Ethernet header, the second one is the IP header and,
lastly, the transport header. The key is built using infor-
mation from layer 3 and layer 4, according to the MUD
standard. This key (struct flow_key_ipv4 or struct
flow_key_ipv6) is searched for in the allowlists. If the
key is not found in the allowlists, the packet is dropped
(using action XDP_DROP). If it is found, the following actions
will take place. First, the flow statistics for the matching
entry (MUD rule) are updated according to the time window
they fall in. If the current time window has expired, the
statistics are first reset, and only then are updated. If the
current time window has not expired, the flow statistics are
updated directly. Next, the conditions for the maximum packet
rate and/or maximum byte rate are checked. If these are not
met (the current flow statistics for the current window are
above the maximum thresholds), the packet is dropped (action
XDP_DROP), else it is passed along (action XDP_PASS).

Moreover, an eBPF map of type BPF_MAP_TYPE_ARRAY
is used to store the current time to determine whether the
packet falls in the current time window or whether the time
window should be updated. Also, another eBPF map of type
BPF_MAP_TYPE_HASH is used to set the window size for
updating statistics (by default one minute) from the userspace
program.

D. iptables firewall adapter

Referring to Figure 4, in this section we describe the
iptables adapter that we implemented by analyzing the firewall
integration with osMUD. The iptables firewall relies on two
main concepts: tables and chains, where tables are made of
chains, while chains are made of rules. From our perspective,
the rules included in a MUD file are enforced in the FOR-
WARD chain, which handles filtering procedures on packets
passing through the firewall.

Thus, after parsing a MUD file, the osMUD manager
produces two types of rules: ACCEPT and DROP-ALL. The
former represents the allowed communications described by
device manufacturers, while the latter is added by the osMUD
manager to blacklist all the other domains not described in the
MUD file. We employ the custom chain concept provided by
the iptables tool to improve rules management. It allows us
to define programs acting only on MUD-related policies, thus
without interfering with those system-related.

For everyday IoT device categories, rate-limiting can further
improve the protection against DoS attacks. To support these
policies in the MUD model, we propose an extension allowing
manufacturers to define device behaviours based on the traffic
volume. Towards this end, our iptables adapter uses the
hashlimit module enabling the rate-limit match for a group
of connections.

TABLE II
MUD MANAGER PERFORMANCE

Parsing Enforcement Total-1 file Total-10 files Total-50 files

1 ms 931 ms 2.27 sec 20.57 sec 112.65 sec

V. EVALUATION

We have extensively evaluated our system implementation
by using the setup in Figure 3. The IoT device and the osMUD
manager each run in a separate virtual machine, hosted on a
MacBook Pro Intel Core i5 with 8GB RAM. Both iptables
and eBPF-MUD-IoT firewalls are configured on VMMUD,
which acts as a bridge between two networks: neta and netb.
The former contains an IoT device named IoT-1, i.e. VM
that emulates a resource-constrained device, while the latter
contains a server interacting with VMs of neta.

A. osMUD performance

We expect that most of the MUD files parsing and rule
enforcement to happen when the router is first initialised or
rebooted, but IoT devices may be added later to the network.
Table II summarises basic performance measurements of our
customised version of osMUD. The MUD file used for these
measurements contains a single trusted host and produces four
firewall policies. Lateral-movement rules are not supported
by osMUD, as mentioned in Section III, which led us to
choose not to include them in the file used for testing.
The fields Parsing and Enforcement, provided in the table,
represent the amount of time needed by our prototype to
process a MUD file based on our data model, and to create
and enforce policies included in that file. These have been
calculated as average values over 50 repetitions of the above
measurements. Moreover, the table reports the time taken to
retrieve, process, and enforce 1, 10, and 50 MUD files based
on our model. It should be noted that, in the reported results,
the frequency of DHCP request polling (5 seconds in osMUD)
is not considered, and MUD file requests are forwarded to a
local server, thus ensuring minimal communication delays. If
the MUD file server is located in a different network accessed
over the Internet this might introduce an additional delay
depending on the network connection.

B. Rule management via eBPF

In this section, we present the results for micro-benchmarks
we run on eBPF-IoT-MUD in Table III. While we expect that
most of the MUD files parsing and rule enforcement to happen
when the router is first initialised or rebooted, new IoT devices
may become part of the IoT network dynamically. Thus, we
evaluate the time it takes to insert and to delete rules in the
eBPF maps, by inserting 255 rules, and then deleting the 255
rules inserted. For these experiments, we used a Lubuntu 20.04
virtual machine running in VirtualBox 6.1.14 on a laptop with
an Intel quad-core i7 processor and 16GiB RAM.

Figure 7a presents the CDF for rules insertion time, with
an average insertion time of 4533.43 ns, while Figure 7b
presents the CDF for rules deletion time, with an average

IN REVIEW, MAY 2023 7

TABLE III
EBPF-MUD-IOT PERFORMANCE (TIME IN NANOSECONDS)

Experiment Min Median Avg 90th 99th Max Std.dev.

Insert rule 3740 4347.43 4533.43 5086.6 7143.62 15037 1019.61
Delete rule 3426 3978 4576.58 4504.2 23551.4 49581 4145.33
Datapath 140 249 556.15 1787.2 2978.95 24915 1089.96

0 2500 5000 7500 10000

Insert rule time [ns]

0.0

0.5

1.0

C
D

F

(a) Rules insertion time in the IPv4 allowlist

0 2500 5000 7500 10000

Delete rule time [ns]

0.0

0.5

1.0

C
D

F

(b) Rules deletion time in the IPv4 allowlist

0 500 1000 1500 2000

Packet processing time [ns]

0.0

0.5

1.0

C
D

F

(c) Packet processing datapath

Fig. 7. eBPF-IoT-MUD evaluation

TABLE IV
PACKET LATENCY (TIME IN MICROSECONDS) AND TRANSACTION RATE

(TRANSACTIONS PER SECOND)

Experiment Min Avg Max Std.dev. Txns/s

No firewall 186.36 368.21 247286 1223.44 2714.01
iptables 187 345.5 203594 606.81 2892.51
eBPF-IoT-MUD 188 342.72 258549 580.61 2915.91

deletion time of 4576.58 ns. We also evaluated the packet
processing datapath with one rule inserted for a ssh connection
from outside the VM to the VM, and we sent different Linux
commands on the ssh connection. Figure 7c presents the CDF
for of the packet processing datapath times, with an average
of 556.15 ns.

We measure the packet latency using the experimental setup
in Figure 3, which runs on a laptop with an Intel quad-
core i7 processor and 16 GiB RAM. The experiment runs
netperf [13] with TCP_RR on the client and sending traffic
to the server across the router. On the router we inserted the
MUD rules that allow the traffic to flow from the client to the
server. We run netperf in three experiments: (i) the baseline (no
firewall); (ii) iptables firewall; (iii) eBPF-IoT-MUD firewall,
and we compare the packet latency and transaction rate. [13]
runs five consecutive tests of 100 seconds for each experiment.
The results are presented in Table IV. There is no noticeable
impact to packet latency and transaction rate compared to the
baseline (no firewall) when using a firewall (iptables or eBPF-
IoT-MUD), with the minimum packet latency being 186 us
for baseline, 187 us with iptables and 188 us with eBPF-IoT-
MUD. The transaction rate is 2714 transactions/s for baseline,
2892.51 transactions/s with iptables, and 2915.91 transaction-
s/s with eBPF-IoT-MUD. These measurements show that using
either firewalls does not add any additional overhead to packet

processing.

C. Rate limiting impact on normal traffic

Based on the analysis we carried out in the previous section,
we defined two MUD files, i.e., using ”peaks” and ”averages”
policies, for each category considered, i.e. appliances and
smart-hubs. We validate these MUD files using the dataset
provided in [14] to emulate IoT device network traffic in
normal conditions. The dataset includes traffic traces of 28
different IoT devices over a period of 6 months, of which only
two weeks are openly available. We selected two devices for
each category analysed, i.e. a Wi-Fi printer as appliance and an
Amazon Echo as smart-hub. To make the traffic traces conform
to our environment (Figure 3), we used tcprewrite tool
from the tcpreplay suite [15].

Once we processed these traces, we first generated and
enforced MUD rules for iptables firewall on the VMMUD
machine using the osMUD manager. Secondly, we started the
collection of iptables statistics in terms of total packets and
bytes sent/dropped originating from the IoT device. Finally,
to replay the devices’ network traffic, we used tcpreplay
on IoT-1 VM as shown in Figure 3a. We replayed three days
of the TCP network traffic from each device selected for each
MUD file defined, aiming to understand whether the policies
generated allow the corresponding IoT device to function
normally.

Figure 8 illustrates the percentage of packets and bytes
dropped after applying these rate-limits. As shown in Fig-
ure 8a, the smart-hubs MUD file using averages as rate-
limits is hardly usable in normal device conditions, as it
blocks most of the outgoing traffic (over 80%). Similarly,
average rate-limits affect the appliances with a dropping rate
of around 11%, which might be a problem, especially during
device updates. Conversely, as shown in figure 8b enforcing

IN REVIEW, MAY 2023 8

Appliances Smart-Hubs
0

10
20

40

60

80

100

D
ro

pp
ed

 (%
)

11.06

83.99

10.56

85.8Packets
Bytes

(a) Average limit

Appliances Smart-Hubs
0.0

0.5

1.0

1.5

D
ro

pp
ed

 (%
)

0.2
0.01

1.18

0.03

Packets
Bytes

(b) Peak limit

Fig. 8. Packet and byte drop rates under normal conditions

MUD rules using peaks as rate-limits does not affect the
overall IoT traffic. In such a scenario, the packet drop rate
remains below 1.5% and 0.05% in appliances and smart-hubs,
respectively. Hence, to limit traffic volume for both categories,
we decided to use MUD files defining peaks-based rate-limits.
Furthermore, this choice is motivated by the fact that devices
adopting TCP in output communications tend to reach the peak
rapidly. On the one hand, it might be related to user activities,
which may cause new iterations of the three-way handshake
procedure. On the other hand, other main characteristics that
make the TCP protocol reliable, e.g., packet re-transmission
and congestion control, might represent the trigger of traffic
peaks.

D. Rate limiting impact on abnormal traffic

To emulate abnormal IoT behaviors, we used the Network
TON IoT dataset [16] providing network traces of several
offensive systems conducting multiple attack scenarios, such
as DoS, Ransomware, and injections attacks. We selected those
referring to a DoS attack and merged them into a single
trace. Next, we used the tcprewrite tool to rewrite the
IP addresses in the trace to correspond to those of our test
setup (Figure 3). As described previously, to replay the traces
we used tcpreplay on IoT-1, thus becoming the originator
of the SYN FLOOD attack, a form of DoS attack based on
multiple SYN Request iterations. The traffic flow has been
highlighted in Figure 3a. Once we processed the abnormal
network traces, we enforced the policies comprised in the
MUD files previously selected. To test the effectiveness of
the rate-limits against this attack, service ports do not appear
in generated MUD files. Figure 9 shows the results for the
appliances group while those smart hubs related are illustrated
in Figure 10. The red line shows the network traffic without
rate-limiting, while the blue and green line represents the
traffic after our shaping (using the rate-limits from the MUD
files for the respective IoT device categories).

We run the experiment using the two firewall backends
we implemented, based on iptables and eBPF-IoT-MUD. For
iptables, we use an additional parameter, --limit-burst,
that allows small traffic bursts (in our case bursts of addi-
tional 5 packets). For eBPF-IoT-MUD, when the rate-limit is
reached, the firewall starts dropping the incoming packets. This

implementation difference explains why the traffic line in the
Figure 9 and Figure 10 is straight when using eBPF-IoT-MUD,
while when using iptables it is less smooth, but still meets the
rate-limit with bursting allowed.

E. Rate limiting discussion
Although the results demonstrate the effectiveness of en-

forcing peak-based rules selected in our analysis, the scenario
we presented assumes that the administrator - i.e., the user
setting the MUD rules - may not have a comprehensive
knowledge of the traffic flow generated in each communication
that a device may engage in. In a more general case, where
manufacturers define the MUD files, it becomes possible to
enable a more precise approach to set rate limiting fields. For
instance, a manufacturer can specify peak-based limits for ev-
ery device they produce and for each outgoing communication
(destination) from the device. This would help decrease the
impact on device normal traffic and prevent DoS attacks from
devices whose category aggregate rate limit is higher than
their peak rate. We note that some DoS attacks might use
traffic shaping, and thus might not be detected using a peak
rate limit, in which case other botnet detection approaches are
needed.

One of our key contributions in this research is the inclusion
of a rate limit field for a MUD rule. The value of these rate
limits can be determined either by the users or the device
manufacturers, although this is a separate research problem
that falls outside the scope of our paper. Our focus, instead,
is on demonstrating the effectiveness of enforcing these rate
limits at the device level as a means of managing network
interactions and bandwidth usage for IoT devices. By doing
so, our proposed solution allows both knowledgeable users
and manufacturers to mitigate DoS attacks that may target
the services required by the device to operate normally, while
minimizing the impact on the device’s regular traffic. It is
important to note that while our approach can be integrated
with other solutions and techniques, it is not intended to be a
comprehensive solution on its own, but rather a vital piece in
the broader fight against DDoS attacks.

VI. RELATED WORK

IoT devices have been used in the past (such as the Mirai
botnet [17]) to carry out Distributed Denial-of-Service (DDoS)

IN REVIEW, MAY 2023 9

0 20 40 60 80 100 120
Windows

0

1

2

3

4

5

6

7

B
yt

es

×105

TCP nofw
TCP iptables
TCP ebpf

(a) Appliances rate-limit bytes per minute

0 20 40 60 80 100 120
Windows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa

ck
et

s

×104

TCP nofw
TCP iptables
TCP ebpf

(b) Appliances rate-limit packets per minute

Fig. 9. Appliances

0 20 40 60 80 100 120
Windows

0

1

2

3

4

5

6

7

B
yt

es

×105

TCP nofw
TCP iptables
TCP ebpf

(a) Smart hubs rate-limit bytes per minute

0 20 40 60 80 100 120
Windows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa
ck

et
s

×104

TCP nofw
TCP iptables
TCP ebpf

(b) Smart hubs rate-limit packets per minute

Fig. 10. Smart hubs

attacks. The heterogeneity of IoT devices makes it difficult
to manage these devices, while at the same time keeping the
home network secure. IoT device non-clonable unique identity
(the root of trust) [18] is essential for authorizing the device on
the network and setting a secure bidirectional connection using
Public Key Infrastructure (PKI) or multi-factor authentication.
However, considering the complexity of PKI solutions, and
friction in user experience in multi-factor authentication, many
IoT devices do not have these provisions [19], thus allowing
devices to be vulnerable to many Botnet infested attacks [5].

Many IoT devices have one PKI for validating their own
identities before setting outgoing traffic. However, there are no
mechanisms for validating incoming traffic from other devices
or the validity of other devices or users using their public keys.
In addition to this, another set of impersonation attacks could
happen even after the initial authentication has been set up
successfully; for example, Bluetooth Impersonation Attacks
(BIAs) [20] were recently detected in many Bluetooth IoT

devices.
Similarly, other malware vulnerabilities recently detected

in Wifi SDK led to more severe attacks through remote
code execution [21]. The exposure of these recent software
vulnerabilities has provided a clear indication of a need for an
additional layer of security. To add this extra layer of security,
in this work, we explore the need of traffic monitoring and
packet/byte rate filtering (limiting) at the router/hub/firewall
level to prevent the damages created by victimised IoT devices
[22]. However, from the network management perspective,
the configuration of filtering rules for each IoT device in
the network is challenging due to the large variety of traffic
patterns. To address this problem, the IETF RFC 8520 [1]
standard requires each IoT device service provider (or manu-
facturer) to provide a Manufacturer Usage Description (MUD)
file profiling their IoT devices.

a) IoT and MUD: Different organisations have devel-
oped prototypes of MUD manager (controller) implementa-

IN REVIEW, MAY 2023 10

tions (middleware) in the last few years to allow seamless
enforcement of the filtering rules specified in MUD files [3],
[23]. Recent research surveys [24]–[26] have discussed their
limitations, challenges, and directions for future research [27].

One of the recognized challenges is the manufacturer’s
resistance to support MUD files and to make devices MUD-
compliant in real deployment environments, in particular in
absence of recognized IoT device usage patterns. One way to
solve this problem is to create a behavioral fingerprint of the
devices in the real environments and then use those fingerprints
to design MUD files [28].

There have been significant efforts for creating behaviour
fingerprints of IoT devices using their network traffic [29],
[30]: the fingerprints are used to detect abnormal behaviours
and take proper actions, either by limiting the incoming/out-
going traffic or by switching off the suspected anomalous
devices. In the same direction, IoTrim [31]’s purpose is to limit
the amount of communications that a device might have by
denying those unnecessary for the primary and vital functions
of the device in order to limit the information exposure of the
user. PicP-MUD [32] analyses the content of the MUD flows
to detect malicious traffic.

The enforcement of traffic filtering at the local system
or router or hub level is done by introducing filtering rules
through iptables [33] or on SDN controllers [34], [35] or
leveraging third-party online services to detect malicious des-
tinations [36]. These works do not use eBPF and XDP to
enforce traffic filtering. Furthermore, all of these works focus
on traffic filtering based on source/destination address of the
packets, and do not consider bandwidth or data rate. The
idea of including bandwidth (packet rate and byte rate as
a part of the MUD) has been discussed in new IETF RFC
draft [27]. Andalibi et al. [37] discussed the advantage of peak
request rate as a part of MUD when deploying MUD in fog
computing environments. Similarly [25], [38] have presented
the challenges associated with the implementation of traffic
rate control at the router and firewall levels in MUD-compliant
networks. Currently, to the best of our knowledge, there is no
MUD implementation that evaluates rate-limitation enforced
by MUD in MUD-compliant networks. Our work shows and
evaluates the advantages of including rate-limiting policies in
MUD files, by showing with quantitative performance results
that it is feasible to deploy extended MUD files using osMUD
on Linux-based routers.

b) eBPF and XDP: eBPF has emerged as a technology
with applications in networking, tracing and profiling, security,
and monitoring. XDP ensures efficient packet processing on
the RX datapath, facilitating the construction of DDoS de-
fences. [39] discusses the performance of packet filtering with
eBPF. [40] presents a hybrid system which uses XDP for traffic
sampling and aggregation, and offloads DDoS mitigation rules
to smartNICs. [41] uses eBPF and XDP for implementing
traffic monitoring applications. [42] presents how XDP is
integrated in the DDoS mitigation pipelines at Cloudflare to
perform traffic analysis, aggregation, reaction and implement
mitigation rules. Our work, eBPF-IoT-MUD, is the first to
use eBPF in a smart home context, and implements a firewall
using eBPF and XDP. Our custom system is integrated with

the osMUD manager that provides it with the MUD rules to
be enforced in order to prevent IoT devices from performing
DDoS attacks on Internet destinations.

c) Learning to block: IoTrim [31] finds the set of desti-
nations contacted by an IoT device, and determines which of
these destinations are needed to maintain device functionality.
These destinations are usually related to the manufacturer,
support or third-party analytics. If a destination is not needed
for the device to operate normally, this destination will be
blocked. The purpose of the work is to limit the information
exposure of the IoT user because of privacy concerns. In our
work, we present an integrated system that enforces MUD
rules in order to avoid IoT devices contacting destinations that
are not in the MUD file. Furthermore, based on the extended
MUD file with rate limits, we thwart volumetric attacks such
as DDoS attacks [43] towards legitimate cloud destinations.
Our work is orthogonal to IoTrim, since we do not make any
judgements on whether the destinations in the MUD file our
system is provided with are necessary for the IoT device to
function normally, nor whether these destinations raise privacy
concerns.

Our system can work in conjunction with IoT device iden-
tification systems that use machine learning models for device
identification [29]. As a first step, a manufacturer can provide
a MUD file with rate limits already defined for an IoT device,
or that has been built using a tool such as [44], [45]. These rate
limits can be further customized based on observed usage pat-
terns using ML models for device identification. Furthermore,
since smart homes can have different network connections and
bandwidths, the network infrastructure conditions can further
help to customize the MUD file.

VII. CONCLUSIVE REMARKS

In the rapidly growing IoT ecosystem, the need for scalable
deployment and management of IoT devices is becoming in-
creasingly important. One of the significant challenges associ-
ated with IoT is the lack of security and privacy standards that
can lead to serious security breaches and privacy violations.
This is particularly challenging given the large number of IoT
devices that are currently deployed and the complex interac-
tions that occur between them. To address these challenges, the
MUD specification was developed. The purpose of MUD is
to restrict traffic while enabling IoT manufacturers to provide
long-term support and updates for their devices, which can
help to improve the security and privacy of IoT ecosystems.
With MUD, IoT devices can be programmed to communicate
only with approved services and networks, thereby preventing
unauthorized access and protecting the privacy and security of
the transmitted data.

This paper advances the related state-of-the-art along dif-
ferent directions. First, it originally presents the design of an
extension to the MUD standard specification that rate-limits
the outgoing traffic of IoT devices. This approach helps to en-
sure that IoT devices do not exceed their allocated bandwidth
limits and do not negatively impact the performance of other
devices on the network. We also demonstrate a procedure to
identify rate-limits for consumer IoT devices. Secondly, we

IN REVIEW, MAY 2023 11

present the implementation and evaluation of a novel end-
to-end system to enforce MUD rules on the home router
through two new firewall backends, based on Linux standard
iptables, and a custom system that uses eBPF (i.e., eBPF-IoT-
MUD). Thirdly, we report novel experimental results about
the performance evaluation of our MUD extension and system
prototype by using the osMUD manager and by prototyping
custom MUD rules in iptables and eBPF-IoT-MUD that are
enforced at routers.

REFERENCES

[1] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage
Description Specification,” RFC 8520, Mar. 2019. [Online]. Available:
https://rfc-editor.org/rfc/rfc8520.txt

[2] P. Krishnan, K. Jain, R. Buyya, P. Vijayakumar, A. Nayyar, M. Bilal,
and H. Song, “Mud-based behavioral profiling security framework for
software-defined iot networks,” IEEE Internet of Things Journal, vol. 9,
no. 9, pp. 6611–6622, 2022.

[3] O. Group, “Open source manufacturer usage specification,” https://
osmud.org, 2018.

[4] M. Fleming, “A thorough introduction to ebpf,” https://lwn.net/Articles/
740157/, 2021.

[5] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[6] L. Lhotka, “JSON Encoding of Data Modeled with YANG,” RFC 7951,
Aug. 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7951.txt

[7] M. Jethanandani, S. Agarwal, L. Huang, and D. Blair, “YANG Data
Model for Network Access Control Lists (ACLs),” RFC 8519, Mar.
2019. [Online]. Available: https://rfc-editor.org/rfc/rfc8519.txt

[8] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 267–279.

[9] M. Fleming, “A thorough introduction to ebpf,” https://lwn.net/Articles/
740157/, 2020.

[10] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacı́fico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications,”
ACM Comput. Surv., vol. 53, no. 1, Feb. 2020. [Online]. Available:
https://doi.org/10.1145/3371038

[11] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
54–66. [Online]. Available: https://doi.org/10.1145/3281411.3281443

[12] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of things (iot):
Taxonomy of security attacks,” in 2016 3rd International Conference on
Electronic Design (ICED), 2016, pp. 321–326.

[13] Hewlett-Packard, “Netperf,” https://hewlettpackard.github.io/netperf/,
2022.

[14] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2019.

[15] Turner, Aaron and Klassen, Fred, “Tcpreplay,” 2021. [Online].
Available: https://tcpreplay.appneta.com/wiki/tcpreplay.html

[16] N. Moustafa, “A new distributed architecture for evaluating ai-based
security systems at the edge: Network ton iot datasets,” Sustainable
Cities and Society, vol. 72, p. 102994, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210670721002808

[17] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai
botnet,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp.
1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[18] I. De Oliveira Nunes, X. Ding, and G. Tsudik, “On the root of
trust identification problem,” ser. IPSN ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 315–327. [Online].
Available: https://doi.org/10.1145/3412382.3458274

[19] D. Dı́az-Sánchez, A. Marı́n-Lopez, F. A. Mendoza, P. A. Cabarcos, and
R. S. Sherratt, “Tls/pki challenges and certificate pinning techniques for
iot and m2m secure communications,” IEEE Communications Surveys
Tutorials, vol. 21, no. 4, pp. 3502–3531, 2019.

[20] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth
impersonation attacks,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 549–562.

[21] T. Claburn, “Wifi sdk vulnerability,” https://www.theregister.com/2021/
08/16/realtek wifi sdk vulnerabilities/, 2021.

[22] D. Kim, V. Andalibi, and J. Camp, “Protecting iot devices through
localized detection of bgp hijacks for individual things,” in 2021 IEEE
Security and Privacy Workshops (SPW), 2021, pp. 260–267.

[23] NIST, “Securing Small-Business and Home Internet of Things Devices:
NIST SP 1800-15,” 2019.

[24] V. Andalibi, E. Lear, D. Kim, and L. J. Camp, “On the analysis of
mud-files’ interactions, conflicts, and configuration requirements before
deployment,” 2021.

[25] J. L. Hernández-Ramos, S. N. Matheu, A. Feraudo, G. Baldini, J. B.
Bernabe, P. Yadav, A. Skarmeta, and P. Bellavista, “Defining the
behavior of iot devices through the mud standard: Review, challenges,
and research directions,” IEEE Access, vol. 9, pp. 126 265–126 285,
2021.

[26] A. Feraudo, P. Yadav, V. Safronov, D. A. Popescu, R. Mortier,
S. Wang, P. Bellavista, and J. Crowcroft, “Colearn: Enabling federated
learning in mud-compliant iot edge networks,” in Proceedings of the
Third ACM International Workshop on Edge Systems, Analytics and
Networking, ser. EdgeSys ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 25–30. [Online]. Available:
https://doi.org/10.1145/3378679.3394528

[27] Lear, E and Henry, J, “Bandwidth profiling extensions
for MUD,” 2020. [Online]. Available: https://tools.ietf.org/html/
draft-lear-opsawg-mud-bw-profile-01

[28] G. Matthı́asson, A. Giaretta, and N. Dragoni, “Iot device profiling:
From mud files to s×c contracts,” in Open Identity Summit 2020,
H. Roßnagel, C. H. Schunck, S. Mödersheim, and D. Hühnlein, Eds.
Bonn: Gesellschaft für Informatik e.V., 2020, pp. 143–154.

[29] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M.
Mandalari, R. Mortier, and H. Haddadi, “Revisiting iot device
identification,” TMA’21, vol. abs/2107.07818, 2021. [Online]. Available:
https://arxiv.org/abs/2107.07818

[30] P. Yadav, A. Feraudo, B. Arief, S. F. Shahandashti, and V. G.
Vassilakis, “Position paper: A systematic framework for categorising
iot device fingerprinting mechanisms,” in Proceedings of the 2nd
International Workshop on Challenges in Artificial Intelligence and
Machine Learning for Internet of Things, ser. AIChallengeIoT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
62–68. [Online]. Available: https://doi.org/10.1145/3417313.3429384

[31] A. M. Mandalari, D. J. Dubois, R. Kolcun, M. T. Paracha, H. Haddadi,
and D. Choffnes, “Blocking without breaking: Identification and miti-
gation of non-essential iot traffic,” Proceedings on Privacy Enhancing
Technologies, vol. 4, pp. 369–388, 2021.

[32] A. Pashamokhtari, A. Sivanathan, A. Hamza, and H. H. Gharakheili,
“Picp-mud: Profiling information content of payloads in mud flows for
iot devices,” in 2022 IEEE 23rd International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022, pp.
521–526.

[33] Gabriel Brown, “Regulation of iot device communications using
mud files and iptables,” 2019. [Online]. Available: https://gitlab.com/
columbia.irt/riot/tree/master/Fall2019/CombineRouter

[34] M. Ranganathan, D. Montgomery, and O. E. Mimouni, “Soft
mud: Implementing manufacturer usage descriptions on openflow
sdn switches.” ThinkMind, Valencia, ES, 2019-03-24 04:03:00
2019. [Online]. Available: https://tsapps.nist.gov/publication/get pdf.
cfm?pub id=927289

[35] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman, “De-
tecting volumetric attacks on lot devices via sdn-based monitoring of
mud activity,” in Proceedings of the 2019 ACM Symposium on SDN
Research, 2019, pp. 36–48.

[36] J. Habibi, D. Midi, A. Mudgerikar, and E. Bertino, “Heimdall: Mitigating
the internet of insecure things,” IEEE Internet of Things Journal, vol. 4,
no. 4, pp. 968–978, 2017.

[37] V. Andalibi, D. Kim, and L. J. Camp, “Throwing MUD into the FOG:
Defending IoT and fog by expanding MUD to fog network,” in 2nd

https://rfc-editor.org/rfc/rfc8520.txt
https://osmud.org
https://osmud.org
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://rfc-editor.org/rfc/rfc7951.txt
https://rfc-editor.org/rfc/rfc8519.txt
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://doi.org/10.1145/3371038
https://doi.org/10.1145/3281411.3281443
https://hewlettpackard.github.io/netperf/
https://tcpreplay.appneta.com/wiki/tcpreplay.html
https://www.sciencedirect.com/science/article/pii/S2210670721002808
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://doi.org/10.1145/3412382.3458274
 https://www.theregister.com/2021/08/16/realtek_wifi_sdk_vulnerabilities/
 https://www.theregister.com/2021/08/16/realtek_wifi_sdk_vulnerabilities/
https://doi.org/10.1145/3378679.3394528
https://tools.ietf.org/html/draft-lear-opsawg-mud-bw-profile-01
https://tools.ietf.org/html/draft-lear-opsawg-mud-bw-profile-01
https://arxiv.org/abs/2107.07818
https://doi.org/10.1145/3417313.3429384
https://gitlab.com/columbia.irt/riot/tree/master/Fall2019/CombineRouter
https://gitlab.com/columbia.irt/riot/tree/master/Fall2019/CombineRouter
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927289
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927289

IN REVIEW, MAY 2023 12

USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19).
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotedge19/presentation/andalibi

[38] A. Feraudo, P. Yadav, R. Mortier, P. Bellavista, and J. Crowcroft,
“Sok: Beyond iot MUD deployments - challenges and future
directions,” CoRR, vol. abs/2004.08003, 2020. [Online]. Available:
https://arxiv.org/abs/2004.08003

[39] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
“Performance implications of packet filtering with linux ebpf,” in 2018
30th International Teletraffic Congress (ITC 30), vol. 01, 2018, pp. 209–
217.

[40] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese,
“Introducing smartnics in server-based data plane processing: The ddos
mitigation use case,” IEEE Access, vol. 7, pp. 107 161–107 170, 2019.

[41] M. Abranches, O. Michel, E. Keller, and S. Schmid, “Efficient network
monitoring applications in the kernel with ebpf and xdp,” in 2021 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2021, pp. 28–34.

[42] G. Bertin, “Xdp in practice:integrating xdp into our ddos mitiga-
tion pipeline,” https://legacy.netdevconf.info/2.1/papers/Gilberto Bertin
XDP in practice.pdf, 2017.

[43] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman,
“Detecting volumetric attacks on lot devices via sdn-based monitoring
of mud activity,” in Proceedings of the 2019 ACM Symposium on
SDN Research, ser. SOSR ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 36–48. [Online]. Available:
https://doi.org/10.1145/3314148.3314352

[44] A. Hamza, D. Ranathunga, H. H. Gharakheili, M. Roughan, and
V. Sivaraman, “Clear as mud: Generating, validating and applying
iot behavioral profiles,” in Proceedings of the 2018 Workshop on
IoT Security and Privacy, ser. IoT S&P ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 8–14. [Online].
Available: https://doi.org/10.1145/3229565.3229566

[45] A. Bremler-Barr, B. Meyuhas, and R. Shister, “One mud to rule them
all: Iot location impact,” in NOMS 2022-2022 IEEE/IFIP Network
Operations and Management Symposium, 2022, pp. 1–5.

https://www.usenix.org/conference/hotedge19/presentation/andalibi
https://arxiv.org/abs/2004.08003
https://legacy.netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://legacy.netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_practice.pdf
https://doi.org/10.1145/3314148.3314352
https://doi.org/10.1145/3229565.3229566

	I Introduction
	II Extending MUD
	II-A The MUD data model
	II-B A rate-limiting extension
	II-C Learning thresholds

	III Liberating MUD
	IV Adapting MUD
	IV-A eBPF, XDP, and tc
	IV-B eBPF program structure
	IV-C eBPF-IoT-MUD adapter
	IV-D iptables firewall adapter

	V Evaluation
	V-A osMUD performance
	V-B Rule management via eBPF
	V-C Rate limiting impact on normal traffic
	V-D Rate limiting impact on abnormal traffic
	V-E Rate limiting discussion

	VI Related Work
	VII Conclusive Remarks
	References

