
Demo: Battery Depletion Attack through Packet
Injection on IoT Thread Mesh Network

Poonam Yadav
Department of Computer Science

University of York
United Kingdom

poonam.yadav@york.ac.uk

Nirdesh Sagathia
Department of Computer Science

University of York
United Kingdom

ns1584@york.ac.uk

Dan Wade
Department of Computer Science

University of York
United Kingdom

djw585@york.ac.uk

Abstract—In the rapidly expanding landscape of Internet of
Things (IoT) device manufacturing and deployment, concerns
about security have become prominent. This demonstration
involves practical attacks on a thread-mesh network within
a controlled environment, exploiting vulnerabilities in various
components of the Thread network stack. Our attack vectors
successfully identified nearby Thread networks and devices by
gathering 2-byte Personal Area Network ID (PAN ID) and device
frequency information, serving as reconnaissance for potential
additional attacks. The focus was on investigating susceptibility
to replay attacks and packet injection into thread-mesh networks.
Although the experiment attempted to capture thread packets
to emulate an authorised sender, the cryptographic encryption
and sequence numbers employed for integrity checks resulted
in packet rejection by the network. Despite this, our successful
injection of packets highlights the potential for battery depletion
attacks.

Index Terms—Internet of Things (IoT), Thread, IEEE 802.15.4,
Thread Protocol, Zigbee, Matter Protocol, Interoperability

I. INTRODUCTION

The growing prevalence of Internet of Things (IoT) devices
from various emerging companies has sparked considerable
apprehension regarding the security of these interconnected
systems [1]. In response to this concern, we direct our focus to-
wards the Thread protocol, a successor to the Zigbee protocol
that operates on the same radio frequency, namely 802.15.4.
Initially, we propose replicating attacks feasible on Zigbee to
gain familiarity with the network’s behaviors. Our success
in executing replay attacks on Zigbee serves as motivation
to explore similar exploits within the Thread network [2].
In this demonstration, our goal is to showcase the following
objectives:

• Setting up a Thread mesh network [3] where devices
establish connections using IPv6.

• Develop a sniffer for IEEE 802.15.4 network [4] with
the capability to capture and later replay as an injector
on the Thread mesh network. This involves capturing
packets from Development kits and Commercial Home
automation devices, providing insights from an attacker’s
perspective. In essence, the objective is to discern what
an attacker can deduce from the Thread network [5].

• Explore the potential for replay attacks on Thread net-
works.

Thread Topology 
Monitor

Thread link

Thread link

eero Gateway

Thread link

USB connection

USB connection

Thread link

Wifi

Cellular /
Broadband 

Thread 
Mesh 
NetworkOpenThread Border 

Router composed of 
Raspberry Pi 4 and 
nRF52840 USB 
dongle.

nrf52840 DK

nrf52840 DKnrf52840 DK

Internet

nrf52840  as a 
Sniffer

Opensniffer used for network 
scanning and packet injection to 
execute an attack.

Fig. 1: The diagram illustrates the experimental network con-
figuration at Systron Lab. It features nRF52840 Development
Kits [9] as Thread nodes and a Border Router, consisting
of a Raspberry Pi connected to an nRF52840 USB dongle,
for establishing a Thread mesh network. The Border Router
interfaces with an eero gateway. All Nordic Development
kits communicate wirelessly via IEEE 802.15.4, with USB
connections to laptops/computers exclusively used for serial
connections. An nRF52840 connected to a PC acts as a sniffer.
Network scanning and packet injection for conducting attacks
are carried out using the Sewio OpenSniffer. Please note that
both the packet sniffer and packet injector exist externally to
the network.

• Examine the viability of battery depletion attacks that
could lead to Denial of Service incidents in Thread
networks [6]–[8].



Fig. 2: In this instance, we witness the successful replay of the
previously captured UDP packet into the network. The original
packet is designated as packet number 3, the first replayed
packet is 8, and the subsequent replayed packet, after the
removal of the last two bytes, is identified as packet number
11 in the figure. Both of these packets are acknowledged,
although, at the upper layer, they were not received.

II. FAILED ENDEAVOR TO EXECUTE A REPLAY ATTACK

To validate our assumption regarding the replay attack, we
executed an experiment involving the extraction of raw hex
data and UDP message packets from the PCAP files containing
the captured packets. Subsequently, we injected these packets
into the Thread network using an OpenSniffer device. Initially,
the first attempt was unsuccessful due to a packet length
mismatch between the sent packet and the sniffed packet by
the OpenSniffer. For example, we observed that the received
packet had an additional 2 bytes in Wireshark when replaying
packet number 8, as shown in Fig. 2. This packet was not
recognised as UDP and displayed a length discrepancy of 37
bytes, deviating from the original 35 bytes.

To address this issue, we removed the final four hex charac-
ters during packet injection. Following this adjustment, packet
number 11, as shown in Fig. 2, was modified to precisely
match the original UDP format and length of 35 bytes. Despite
achieving a structurally accurate packet, the receiving device
acknowledged its reception at the Link layer, and the packet
acknowledgment occurred in packet 12, indicating reception
but rejection at the MAC (Medium Access Control) layer. This
requires further detailed investigation.

The research recognises the encryption challenges posed by
the captured packets and highlights potential time-consuming
trial-and-error methods for identifying valuable packets for
replay attacks. However, this experiment motivated us to
investigate Denial of Service (DoS) attacks in this instance
by understanding energy utilisation in processing the replayed
packets and their impact on overall node/device availability
and functionality.

Fig. 3: The network setup includes all nRF52840 Development
Kits [9] and a Border Router, consisting of a Raspberry
Pi connected to an nRF52840 USB dongle, for establishing
a Thread mesh network. All Nordic Development kits are
wirelessly linked via IEEE 802.15.4 (Thread protocol), and
USB connections are exclusively used for accessing serial
connections.

Fig. 4: An nRF52840 Development Kit, flashed with a sniffer
binary hex file, is connected to a Windows PC via USB to
capture packets on Wireshark.

III. BATTERY DEPLETION ATTACK

We conducted a battery depletion attack using a Rasp-
berry Pi as a monitoring tool and Sewio OpenSniffer for
packet capture and replay. Subsequently, we attempted to
ping the OpenThread device’s IPv6 address during the battery
depletion attack. However, once the attack commenced, the
target nRF52840 Development Kit with a battery (CC1352P1)
couldn’t respond to ICMPv6 Echo Request messages due to
the overwhelming flood of UDP packets, typically occurring
at around 85–100 packets per second [10].

Pausing traffic flooding to track the outage duration proved
ineffective due to the high volume of packets. The Sewio
OpenSniffer’s proprietary web interface, which allows in-



Fig. 5: A Sewio OpenSniffer is utilised for packet capture and
injection.

jecting only a specific number of packets, faced issues like
overflow and negative numbers with large values. In con-
trast, Wireshark packet captures were analysed for reverse
engineering the underlying frame structure. We developed a
Python script with a requests module that repeatedly sent
GET requests to inject the endpoint into a loop. Additionally,
we incorporated 5-second delays after any failed or timeout
injection requests to enforce stability within the script.

Experimental trials indicated that the CC1352P1 battery
discharges within 1-2 hours. This means the battery voltage
drops from 3.3V to 2.7V, resulting in total energy depletion
and the inability to power on again even with a new battery.
Remarkably, another trial lasted for over nine hours at a higher
rate of 100 packets per second without disabling, although
the voltage declined to 2.8V, indicating erratic behavior in
battery chemistry. For example, demoting an OpenThread
router and promoting a battery-powered device to the leader
are unintended side effects that illustrate the self-healing of
the mesh network but require rebooting to be corrected. This
work is in progress, and you can find the latest updates on
Systron Lab’s GitHub account [11].

IV. DEMO REQUIREMENTS

To deliver a high-quality exhibition, the following condi-
tions and requirements must be met for this demonstration:

1) A test area measuring 2.5 meters in length and featuring
a 1-meter-wide table to accommodate the two laptops.

2) To minimise potential interference with other demon-
strations, it is recommended to consider an alternative
arrangement that avoids conflicts, especially considering
that the thread network will broadcast on Channel 11 of
radio 802.15.4.

V. DEMO DESIGN

For creating a Thread Mesh Network, the following hard-
ware setup will be created by the demo presenters.

1) Two laptops or PCs for sniffing and injecting network
traffic packets.

2) The Thread Network comprises a Raspberry Pi 4 func-
tioning as an OpenThread Border Router, connected to
a Nordic nrf52840 dongle. Additionally, there are four
Nordic nrf52840 development kits, each flashed with
full-thread devices, a Sleepy End device, and a Thread
Topology monitor, as illustrated in Fig. 3.

3) An IEEE 802.15.4 sniffer is set up using a Nordic
nrf52840 Development kit flashed with a sniffer binary
hex file, as illustrated in Fig. 4.

4) The Sewio OpenSniffer [12], which features a Web-GUI
as depicted in Fig. 5, is employed to inject packets into
the Thread mesh network. Additionally, it possesses the
capability to sniff packets and scan the Thread channel
operating on the IEEE 802.15.4 radio.

ACKNOWLEDGMENT

This work is supported in part by EPSRC grants
EP/X525856/1, EP/X040518/1 and EP/Y019229/1.

REFERENCES

[1] D. Dinu and I. Kizhvatov, “Em analysis in the iot context:
Lessons learned from an attack on thread,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2018, p. 73–97,
Feb. 2018. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/833

[2] F. Farha, H. Ning, S. Yang, J. Xu, W. Zhang, and K.-K. R. Choo, “Times-
tamp scheme to mitigate replay attacks in secure zigbee networks,” IEEE
Transactions on Mobile Computing, vol. 21, no. 1, pp. 342–351, 2022.

[3] Threadgroup, “Overview of Thread,” https://www.threadgroup.org/
What-is-Thread/Overview, accessed on 25th Oct 2022.

[4] N. Semiconductor, “nRF Sniffer for 802.15.4,” https://github.com/
NordicSemiconductor/nRF-Sniffer-for-802.15.4, accessed on 23rd
September 2023.

[5] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: Application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[6] D.-G. Akestoridis, V. Sekar, and P. Tague, “On the security of
thread networks: Experimentation with openthread-enabled devices,” in
Proceedings of the 15th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, ser. WiSec ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 233–244. [Online].
Available: https://doi.org/10.1145/3507657.3528544

[7] A. Feraudo, D. A. Popescu, P. Yadav, R. Mortier, and P. Bellavista,
“Mitigating iot botnet ddos attacks through mud and ebpf based traffic
filtering,” in 25th International Conference on Distributed Computing
and Networking (ICDCN), 2024, pp. 1–12.

[8] D. Wade and P. Yadav, “Performing a Replay and Battery Depletion
Attack against Thread networks,” BSc Disseration, https://github.com/
SystronLab/ThreadBatteryAttack/, accessed on 1 Oct 2023.

[9] N. semiconductor, “nRF52840 SoC,” https://www.nordicsemi.com/
products/nrf52840, accessed on 25th Oct 2022.

[10] V.-L. Nguyen, P.-C. Lin, and R.-H. Hwang, “Energy depletion attacks in
low power wireless networks,” IEEE Access, vol. 7, pp. 51 915–51 932,
2019.

[11] SystronLab, “Thread Battery Attack,” https://github.com/SystronLab/
ThreadBatteryAttack/, accessed on 15th December 2023.

[12] Sewio, “Open Sniffer,” https://www.sewio.net/open-sniffer/, accessed on
23rd September 2023.


