
HIFFR: Hybrid Intelligent Fast Failure Recovery
Framework for Enhanced Resilience in Software

Defined Networks
Rehab Alawadh

Department of Computer Science
University of York, UK

rehab.alawadh@york.ac.uk

Poonam Yadav
Department of Computer Science

University of York, UK
poonam.yadav@york.ac.uk

Hamed Ahmadi
School of Physics, Engineering and Technology

University of York, UK
hamed.ahmadi@york.ac.uk

Abstract—Deploying new optimised routing policies on
routers in the event of link failure is difficult due to the
strong coupling between the data and control planes and
the absence of topology information about the network.
Because of the distributed architecture of traditional Internet
protocol networks, policies and routing rules are spread
in a decentralised way, resulting in looping and conges-
tion problems. Software-defined networking (SDN) enables
centralised network programmability. As a result, data
plane devices just focus on packet forwarding, leaving the
control plane’s complexities to be managed by the controller.
Thus, the controller centrally installs the policies and rules.
Considering the controller’s knowledge of the global network
architecture, central control enhances the flexibility of link
failure identification and restoration.

Therefore, this paper uses SDN architecture to enhance
network resilience against link failures by introducing the
Hybrid Intelligent Fast Failure Recovery (HIFFR) frame-
work, which aims to improve the speed and effectiveness of
network failure recovery.

Index Terms—Software-Defined Networking (SDN), Re-
silience, Link Failure, Routing Protocols, Graph Neural
Network (GNN)

I. INTRODUCTION

Numerous objects in our surrounding environment have
the potential to be integrated into intelligent systems that
gather data and provide various services, thereby signifi-
cantly increasing network deployment size as well as the
volume of network traffic [1]. To develop a link between
specific entities, it is necessary to have a well-established
network topology and a real communication medium
for the efficient transfer of data packets. To effectively
manage and maintain the network, it is necessary to focus
on ensuring the reliability and availability of network
services, especially critical ones, which must be available
at all times, by ensuring no delayed or undelivered data
that may have harmful implications.

Software-defined networking (SDN) [2] was devised
as an intelligent technology offering a new viewpoint. It
optimises traditional networks’ operating management by

separating the control plane and the data plane. In network
management architecture, the control plane operates under
a centralised controller with a global topology view. This
feature enables the controller to manage different and
complex challenges. On the contrary, the data plane is
solely tasked with carrying out basic forwarding functions.
Intercommunication between the control and data planes
is commonly facilitated using the OpenFlow protocol [3].

The controller is the central component, crucial in
managing and orchestrating network traffic [4]. In the
event of a link failure, the SDN controller promptly
detects this disruption through real-time monitoring mech-
anisms. Once detected, the controller triggers a sequence
of automated actions to minimise the effects of the link
failure. It dynamically adjusts the network topology by
rerouting traffic from the affected link, ensuring uninter-
rupted connectivity and minimising downtime. Through its
centralised network view, the SDN controller efficiently
redirects it along alternate paths or dynamically adjusts
forwarding rules across network devices.

When implementing Software-Defined Networking
(SDN) for network device management, particularly with
OpenFlow switches, plenty of opportunities arise to en-
hance network management and efficiency. Despite these
opportunities, this architectural shift also brings new chal-
lenges, one of the most critical being the management of
link failures. Therefore, SDN architectures should possess
fault tolerance capabilities to mitigate the impact of such
failures.

A failure occurs due to one or more errors causing
network misbehaviour [5]. Failure management can be
divided into two primary methods: detection and recov-
ery. In the context of SDN, detection methods can be
categorised as periodic or event-based. In contrast, failure
recovery strategies can be divided into two groups: proac-
tive (protection) and reactive (restoration) [6]. However,
when it comes to link failure, these two approaches
handle failures in distinct ways, each having its own
implementation mechanism and duration of execution.979-8-3503-7786-6/24/$31.00 © 2024 IEEE

20
24

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 W
ire

le
ss

 N
et

w
or

ks
 a

nd
 M

ob
ile

 C
om

m
un

ic
at

io
ns

 (W
IN

CO
M

) |
 9

79
-8

-3
50

3-
77

86
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

W
IN

CO
M

62
28

6.
20

24
.1

06
57

34
3

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

An efficient flow installation process is essential to
address the issue of failures. Reactive flow installation is
employed after a failure has occurred. This process, crit-
ical for directing network traffic, experiences significant
delays. These delays mainly stem from the time needed
for switch-controller communication when a switch lacks
a corresponding rule in its flow table for incoming traffic.
During reactive flow installation, the latency of signalling
messages sent to the SDN controller increases, particularly
when the switch simultaneously processes multiple flow
rules received from the controller.

Another strategy is proactive, employed before failures
occur. This approach involves the SDN controller’s static
pre-installation of flow rules, enabling faster recovery
from link failures than the reactive strategy. By pre-
emptively installing these rules, latency is significantly
reduced, a critical factor for the deterministic communica-
tion necessary in real-time systems. However, while this
approach reduces latency, it lacks the flexibility to adapt
to dynamic network state changes, potentially resulting
in performance issues and increased storage overhead for
switches due to storing backup paths.

Faced with these challenges, we propose expanding
our strategy to include both pre-failure and post-failure
stages of network management. The pre-failure stage
focuses on predicting and preventing network link fail-
ures. This stage aims to identify links at risk of failure,
utilising monitorable network metrics, allowing for pre-
emptive measures to mitigate potential disruptions. The
post-failure stage, conversely, is activated when a failure
occurs to quickly determine and implement the most
optimal routing solutions to ensure network resilience and
maintain service continuity [7]. To effectively manage
these stages, we explore applying advanced deep learning
techniques, specifically Graph Neural Networks (GNN),
to enhance our predictive and reactive capabilities within
the network infrastructure.

Furthermore, to address the fast recovery process while
considering latency issues and enhancing network adapt-
ability, we introduce the Hybrid Intelligent Fast Failure
Recovery (HIFFR) framework. This approach dynamically
redefines the optimal path in response to network link fail-
ures and status changes, leveraging continuous monitoring
to minimise the time required to compute the optimal path
and reduce the communication overhead between switches
and the SDN controller. By utilising a hash table to store
flow rules based on the current minimum path latency
within the memory space of the SDN controller, we aim
to alleviate the controller’s load significantly. This strategy
ensures the swift calculation of forwarding paths for
recovery. It facilitates the achievement of high availability,
reliable packet delivery, and minimal latency, thereby
addressing both the pre-emptive and reactive aspects of
network management in the context of SDN.

The remainder of the current report is organised as

follows: Section II presents a comprehensive examination
of relevant studies documented in existing literature. This
section provides valuable perspectives on the research
conducted within this domain. Section III illustrates and
explains our proposed HIFFR system architecture with
pre-failure detection. Section IV elaborates on our pro-
posed HIFFR system architecture with detailed post-
failure management to facilitate better comprehension. Fi-
nally, in Section V, we provide our conclusions, outlining
the benefits of our contribution in summary.

II. RELATED WORK

Several studies have investigated managing failures in
software-defined networking (SDN). Two main popular
recovery strategies are applied: reactive, which is applied
after the failure occurs, and proactive, which works before
a failure happens.

A significant number of studies have employed a reac-
tive approach to recovery. The paper [8] presents a rapid
port failure recovery solution for OpenFlow networks that
utilise traditional Internet routing protocols such as Border
Gateway Protocol (BGP) and Open Shortest Path First
(OSPF). The authors in [9] discussed that periodically
monitoring the link to detect failures before setting up
a backup path may strain the controller. To mitigate
this, the monitoring responsibility should shift from the
controller to the OpenFlow switch, yet this contradicts
SDN principles. The study conducted in [10] Created a
localised fast reroute (LFR) technique to facilitate faster
recovery while minimising the controller’s involvement.
The system combines fragmented traffic patterns into a
unified large flow and dynamically computes an alternative
local routing.

Similarly, several studies have been conducted using
a proactive approach to recovery. The study in [11]
introduces a Group Table-based Rerouting (GTR) tech-
nique designed to improve the recovery process from
link failures in SDN. It utilises OpenFlow’s Fast Fail-
over (FF) group table capability to optimise memory
usage and reduce resource utilisation. The authors of [12]
propose a proactive recovery approach to reduce controller
processing load and ensure an effective failure recovery
system. They develop a mixed-integer Integer Linear
Programming Model for pre-computed backup recovery
paths, considering QoS indicators. In their follow-up work
[13], The authors expand on their previous research by
incorporating a failure rerouting technique using Multi-
protocol Label Switching tags and an extended version of
OpenFlow, making it incompatible with current networks
and hardware switches. The study by [14] proposes a
system to reduce controller communication and implement
local actions using two approaches for bypass pathways.
However, this could cause load imbalance and congestion
and hinder network reconfiguration due to large updates.

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

Several studies have utilised the Ryu [15] controller
to evaluate SDN architecture’s performance, deeming it
an optimal choice. For instance, the study [16] explores
implementing a database-centric SDN architecture with
configuration engines utilising the REST API provided by
the Ryu controller to achieve flexible and efficient network
administration. Similarly, another study [17] evaluates the
efficacy of the Ryu controller in optimising network re-
sources and improving traffic routing to enhance network
performance. The authors in [18] demonstrate the effec-
tiveness of the Ryu controller in dynamically monitoring
and capturing network traffic statistics for better network
performance.

As a promising direction in developing 6G and future
networks [19], SDN plays a crucial role. It allows for dy-
namic control, scalability, and security, which are essential
for creating highly efficient and adaptive communication
systems in the future. Several research efforts have been
conducted to address the integration of SDN with 6G.
For instance, in [20], the authors emphasise incorporating
SDN-based unmanned aerial vehicles systems (SDUAVs),
developing networking technologies, and service require-
ments for 6G services. Their study provides a thorough as-
sessment of the possibilities of SDUAV networks for next-
generation wireless communication. Additionally, another
survey [21] provides a comprehensive overview of SDN
technology in 5G and 6G networks. It was conducted to
highlight the potential of SDN for revolutionising mobile
communications and addressing key network performance
requirements for future generations.

Several recent studies have integrated graph neural
network (GNN) technology with SDN. RouteNet [22] is a
Graph Neural Network model for network modelling and
optimisation in SDN. It accurately estimates performance
metrics like delay and jitter, outperforming traditional
schemes like Open Shortest Path First (OSPF). It has
potential applications in routing optimisation and Service
Level Agreement (SLA) maintenance. In the follow-up
study [23], the authors introduce a novel approach that
uses GNN to predict key performance indicators (KPIs)
like delay, jitter, and loss in SDN. It incorporates prob-
abilistic modelling, packet loss ratio prediction adapta-
tion, residual connections for training facilitation, and
computation cost improvements. The Shapley Explainer
method [24] is a new approach to interpreting GNN in
SDN. It uses Shapley values and a soft discrete mask
matrix to provide scores of fair importance to input nodes,
effectively predicting network performance metrics in the
RouteNet model.

In summary, previous studies have proposed various
approaches and methodologies to address failure recovery.
The availability of TCAM (Ternary Content Addressable
Memory) space often limits the effectiveness of proactive
strategies in managing network traffic. Proactive strategies
typically involve creating rules in the TCAM table to

Fig. 1: HIFFR System Architecture with Pre-Failure De-
tection.

identify and manage traffic flows. However, limited
TCAM space can restrict the number of rules that can be
implemented, potentially hindering the effectiveness of
these strategies. Conversely, reactive solutions encounter
notable latency issues, as the controller must promptly
update failed routes.

As a result, a hybrid strategy that combines the advan-
tages of both recovery strategies with the Ryu controller
is adopted. This approach incorporates machine learning
techniques to address the link failure issue efficiently.

III. HIFFR SYSTEM ARCHITECTURE WITH
PRE-FAILURE DETECTION

The HIFFR System Architecture is designed to provide
a resilient and robust network infrastructure capable of
anticipating potential failures through advanced detection
techniques. This comprehensive framework ensures op-
timised protocol use across different stages, enhancing
network reliability and performance, as shown in Fig. 1.

This system’s topology discovery and monitoring serve
as intermediaries between the SDN controller and the
physical network. Their responsibility lies in facilitating
the exchange of information between the SDN controller
and the network. Initially, topology discovery is used to
gather and update diverse networking information from
switches and routers in real-time. Subsequently, transmis-
sion requests are forwarded to the efficient routing gener-
ator for optimal path calculation and decision-making.

Graph Neural Networks (GNN) [25] are used by the
system to improve the prediction of potential connection
failures at the stage preceding any failure. To anticipate
failures and find vulnerabilities in the network before they
affect the entire system, this approach analyses the graph
structure of the network. Then, it sends the analysed result
to the decision creator. The decision creator then transmits
the configurations to the network switches and routers via
a flow table. By continuously monitoring and analysing
the network graph, the GNN can predict possible connec-
tion failures, enabling proactive actions to reduce risks. By

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

identifying underperforming links or nodes, the system
can reroute traffic or adjust configurations to maintain
optimal network performance. GNN provides a deeper
understanding of network dynamics, improving the overall
resilience of the network infrastructure against potential
disruptions.

IV. HIFFR SYSTEM ARCHITECTURE WITH
POST-FAILURE MANAGEMENT

In efforts to enhance the performance of SDN networks,
a proposed modification involves reinforcing the controller
by integrating specific applications designed to efficiently
manage packet rerouting processes in the event of link
failures, as shown in Fig. 2.

Fig. 2: HIFFR System Architecture with Post-Failure
Management.

In response to link failures, a new optimal path is
selected from a pre-computed list of paths to enhance the
speed of calculations and decrease the load on the SDN
controller. Flows are classified as most or less frequently
used. Depending on this classification, backup paths are
stored either in the controller’s hash table or the switch’s
flow table. This adaptation aims to optimise the overall
management of the network system, thereby enhancing
its efficiency and resilience.

A. The Application Layer

The application layer is the top layer in the HIFFR
architecture [26]. It is the layer in which services and ap-
plications determine network behaviour. Multiple network
apps transmit information regarding network policies and
distinct functionalities. These applications communicate
with the underlying SDN control layer using northbound
APIs. Applications at this layer include security policies,
load balancing, and traffic engineering tools. The applica-
tion layer acts as an intermediary between network oper-
ators and the foundational SDN architecture, facilitating
the implementation of smart and adaptable networking
solutions.

B. The Control Layer

The control layer of HIFFR is centralised in a logi-
cal manner through the controller or network operating
system. This system is responsible for managing requests
originating from the infrastructure layer. The control layer
is responsible for setting up elements, assigning data
paths and configuring policies. The control plane [27]
serves as the avenue for dictating the behaviour of the
network. This plane regulates rules for the operation of
the entire network. Each network functions as per the
responses and commands issued, and it is the task of
the control plane to process and execute these demands.
The communication process with the infrastructure layer
encompasses enforcing behaviour and fulfilling low-level
control alongside capability discovery. In this layer, the
SDN controller acts as the central intelligence of the
network, simplifying network administration.

Within the HIFFR system, the Ryu SDN controller is
considered in the framework’s design. Four main applica-
tions are integrated with the SDN controller to enhance
the detection and recovery process in the event of link
failure.

– Topology Discovery and monitoring Application
The Topology Discovery function of our architecture
identifies the network structure and provides infor-
mation about the sensor nodes and links available.
It begins as soon as the network connects to the
SDN controller. We use the Link Layer Discovery
Protocol (LLDP) [28], a vendor-neutral, standards-
based Layer 2 network protocol (IEEE 802.1AB)
designed for discovering and advertising information
about neighbouring devices on a local area network
(LAN). It helps us find where network devices are
located and use the Packet In messages to gather
information about registered nodes and transform
data packets so that the SDN controller can work
with them. It also utilises the Flow Mod method
to prepare the packets for OpenFlow, making them
suitable for processing by the SDN controller. Using
NetworkX (a Python package), a graph will be
generated. This graph will then be stored in the SDN
controller’s memory to facilitate efficient rerouting
processes.

– Intelligent Flow Classification Application
In this innovation application, the SDN controller
employs Graph Neural Network (GNN) algorithms
to analyse the network structure and traffic patterns
represented as graphs received from the topology
discovery application. The aim is to distinguish
between the most and least utilised data flows.
By identifying features in the network graph,
GNNs efficiently categorise data flows based on
their frequency of use and significance. This

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

categorization enables the SDN controller to
prioritise how network resources are allocated.
Essential flows, such as real-time communication
or critical data, which are frequently used, are
given priority to store their backup paths in the
switches’ flow table. This ensures access to low
latency and requires less computational time.
Conversely, less frequently used flows store backup
paths in the controller’s hash table to reduce switch
overhead. GNN-based flow classification enables the
system to adapt dynamically to evolving network
conditions, thereby enhancing the overall efficiency
and performance of the SDN infrastructure.

– Efficient Routing Generator Application
In this primary SDN controller application,
alternative backup paths for various flows in the
network are periodically calculated using the Open
Shortest Path First (OSPF) routing protocol [29].
OSPF, a standardized link-state protocol, facilitates
the exchange of routing information within a
single autonomous system (AS). It determines
the shortest path for packet routing by using the
Dijkstra algorithm and sharing routing information
among all OSPF-enabled routers in the network.
This process ensures efficient and reliable packet
forwarding by dynamically adjusting to network
changes and optimizing routes. The application will
continue calculating alternative paths even if no link
failures have occurred. These calculations rely on
the existing network topology, and the controller
identifies alternative paths for each flow, considering
flow classification and latency factors.

– Failure Detector Application The failure detector
function continuously monitors the network for link
failures using the Bidirectional Forwarding Detection
(BFD) protocol [30]. BFD is specifically designed
to quickly identify issues in the communication path
between two network devices, checking not only the
interfaces and data links but also the forwarding
engines themselves. It is commonly used in conjunc-
tion with other routing protocols. Its primary goal is
to provide efficient and rapid failure detection with
minimal overhead and short duration. Upon detecting
a link, switch, or port failure, the SDN controller
is promptly informed of the issue, initiating a fast
failure recovery process.

C. The Infrastructure Layer

The infrastructure layer, the data plane, encompasses
network components like switches, routers, and all other
resources that interact with the user and application traf-
fic [31]. Due to the functioning of the logically centralised

control system, networking equipment like switches and
routers carry out the task of routing data packets ac-
cording to instructions provided by the SDN controller.
These devices commonly employ forwarding tables or
flow tables to determine the handling and transmission
of incoming packets. The infrastructure layer handles
the packet forwarding task following the flow instruc-
tions. The controller installs the flow policies using the
OpenFlow protocol. As a result, this plane’s operation
depends on the other planes’ effectiveness in fulfilling
their respective roles and the interfaces that facilitate
communication and data exchange.

D. Tools and Technologies for Simulation

1) SDN Controllers and Simulation Tools: Ryu [15],
[16] is a flexible network management and sim-
ulation tool that can be used for simulating SDN
controllers.

2) Deep Learning and Data Analysis Tools: Tensor-
Flow [32] is a free and open-source software library
for machine learning and artificial intelligence and
can be used for developing and training GNN mod-
els, and NetworkX [33], a python library, can be
utilised to analyse and visualise the network’s graph
structure.

3) Network Emulation and Testing: To effectively eval-
uate network performance and resilience under var-
ious conditions, Mininet [34] and GNS3 [35] are
utilised for network emulation and testing.

E. Implementation

The implementation of the project is currently a work
in progress. So far, the experimental setup has been com-
pleted, and several key components have been developed
and tested. This section outlines the completed work as
well as the planned future work.

– Network Topology Design: The topology chosen to
implement the proposed system is the HiberniaUK
topology [36]. It is a significant part of the internet
infrastructure in the United Kingdom. Custom Python
script is used to create a network topology using
Mininet.

Peterborough

Bracewell

S13

Manchester

London

ReadingBristol

Cambridge
Leicester

Birmingham

Sheffield

Liverpool

Southport

Leeds

S10

S12

S11

S9

S8
S6

S7 S2 S3

S1

S4
S5

Fig. 3: Network Topology

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

– SDN Controller Configuration: The SDN con-
troller, built on the Ryu framework, has been con-
figured. Core functionalities have been implemented,
including packet handling, flow rule installation, and
LLDP packet processing.

– LLDP Packet Transmission: The function (as
shown in Snippet 1) for sending Link Layer Discov-
ery Protocol (LLDP) packets from the controller to
the switches has been implemented. This allows the
controller to gather topology information from the
network.

def send_lldp_packet(self, datapath, port):
ofproto = datapath.ofproto
parser = datapath.ofproto_parser
pkt = packet.Packet()
pkt.add_protocol(ethernet.ethernet(ethertype=

ether_types.ETH_TYPE_LLDP,src=datapath.
ports[port].hw_addr,dst=lldp.
LLDP_MAC_NEAREST_BRIDGE))

pkt.add_protocol(lldp.lldp(tlvs=[lldp.ChassisID
(subtype=lldp.ChassisID.
SUB_LOCALLY_ASSIGNED,

chassis_id=b’datapath_id’), lldp.PortID(subtype
=lldp.PortID.SUB_LOCALLY_ASSIGNED,

port_id=b’port_no’)]))
pkt.serialize()
self.logger.debug("----------------Sending LLDP

packet: %s", pkt)
actions = [parser.OFPActionOutput(port)]
out = parser.OFPPacketOut(datapath=datapath,

buffer_id=ofproto.OFP_NO_BUFFER, in_port=
ofproto.OFPP_CONTROLLER, actions=actions,
data=pkt.data)

datapath.send_msg(out)

Snippet 1: LLDP Packet Transmission

– Bidirectional Forwarding Detection (BFD) Inte-
gration: A function to handle BFD packets has been
implemented as shown in Snippet 2. This enables
rapid detection of link failures between network de-
vices, improving network resilience and performance.

Start BFD session between switches with a
link between them

for link in net.links:
node1, node2 = link.intf1.node, link.intf2.

node
if isinstance(node1, OVSKernelSwitch) and

isinstance(node2, OVSKernelSwitch):
switch1 = node1
switch2 = node2
Check if there is a direct link between

switches
bfd_session_cmd = ’ovs-vsctl set

Interface ’ + link.intf1.name + ’
bfd:connect=’ + link.intf2.name

result = switch1.cmd(bfd_session_cmd)
if result.strip():

print("Output from BFD session start
cmd: " + result)

else:
print("BFD session started between

switches" + switch1.name + " and
" + switch2.name)

Snippet 2: Bidirectional Forwarding Detection (BFD)

– Spanning Tree Protocol (STP) Activation: A func-
tion to enable STP on all switches in the network has
been implemented and tested (as shown in Snippet
3). This prevents network loops, maintaining a stable
and efficient network topology. For each switch, it
runs the command to set the (stp enable) property to

true. It checks the result of the command execution.
If there is any output, it prints the output. If there
is no output (indicating success), it prints a success
message.

def enable_stp(net):
#Enable STP on the switch
for switch in net.switches:

result = switch.cmd(’ovs-vsctl set Bridge’,
switch,

’stp_enable=true’)
if result.strip():
print("Output from switch:", result)
else:
print("STP enabled on switch: " + switch.name)

Snippet 3: Spanning Tree Protocol (STP) Activation

– Future Work: Extensive testing should be conducted
to validate the functionality and performance of the
implemented features. Additionally, stress testing is
necessary to ensure the network’s robustness and
reliability under various conditions.

V. CONCLUSION

In this work, we introduced the Hybrid Intelligent
Fast Failure Recovery (HIFFR) framework. This approach
dynamically redefines the optimal path in response to net-
work link failures and status changes, leveraging continu-
ous monitoring to minimise the time required to compute
the optimal path and reduce the communication overhead
between switches and the SDN controller. By utilising
a hash table to store flow rules based on the current
minimum path latency within the memory space of the
SDN controller, we aim to alleviate the controller’s load
significantly. This strategy ensures the swift calculation of
forwarding paths for recovery, facilitating high availability,
reliable packet delivery, and minimal latency, thereby
addressing both the pre-emptive and reactive aspects of
network management in the context of SDN.

Integrating software-defined networking (SDN) and
machine learning technologies with routing protocols
has enhanced failure recovery, particularly in real-
time networks. Consequently, intelligent Graph Neural
Networks (GNN) has emerged as an innovative paradigm.
These smart GNNs aim to uniquely enhance the SDN
architecture for pre-failure detection and post-failure
management. The proposed HIFFR for SDN effectively
addresses failures by leveraging machine learning
techniques. By combining rapid recovery mechanisms
with intelligent decision-making, this framework
significantly enhances network resilience. Our research
augments the existing SDN architecture by integrating
additional applications, which improve routing efficiency,
reduce latency, and ensure data availability and reliability.

VI. ACKNOWLEDGMENT
Alawadh is funded by the Saudi Arabian Cultural

Bureau and Qassim University in Saudi Arabia. Dr Yadav

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

is supported, in part, by EPSRC and DSIT-funded projects
(EP/X040518/l), (EP/Y037421/l), (EP/X525856/l), and
(EP/Y019229/1).

REFERENCES

[1] Pritish Mishra, Deepak Puthal, Mayank Tiwary, and Saraju P.
Mohanty. Software defined iot systems: Properties, state of the art,
and future research. IEEE Wireless Communications, 26(6):64–71,
2019.

[2] Evangelos Haleplidis, Kostas Pentikousis, Spyros Denazis, Ja-
mal Hadi Salim, David Meyer, and Odysseas Koufopavlou.
Software-Defined Networking (SDN): Layers and Architecture
Terminology. RFC 7426, January 2015.

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan
Turner. Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, mar 2008.

[4] Manish Paliwal, Deepti Shrimankar, and Omprakash Tembhurne.
Controllers in sdn: A review report. IEEE Access, 6:36256–36270,
2018.

[5] Paulo César Fonseca and Edjard Souza Mota. A survey on fault
management in software-defined networks. IEEE Communications
Surveys Tutorials, 19(4):2284–2321, 2017.

[6] Babangida Isyaku, Kamalrulnizam Bin Abu Bakar, Fuad A.
Ghaleb, and Abdulaziz Al-Nahari. Dynamic routing and failure
recovery approaches for efficient resource utilization in openflow-
sdn: A survey. IEEE Access, 10:121791–121815, 2022.

[7] Vijay Kumar, Poonam Yadav, and Leandro Soares Indru-
siak. Resilient edge: Building an adaptive and resilient multi-
communication network for iot edge using lpwan and wifi. IEEE
Trans. on Netw. and Serv. Manag., 20(3):3055–3071, jan 2023.

[8] Sachin Sharma, Didier Colle, and Mario Pickavet. Enabling fast
failure recovery in openflow networks using routeflow. In 2020
IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN, pages 1–6, 2020.

[9] James Kempf, Elisa Bellagamba, András Kern, Dávid Jocha, Attila
Takacs, and Pontus Sköldström. Scalable fault management for
openflow. In 2012 IEEE International Conference on Communi-
cations (ICC), pages 6606–6610, 2012.

[10] Xiaoning Zhang, Zijing Cheng, RongPing Lin, Lei He, Shui Yu,
and Hongbin Luo. Local fast reroute with flow aggregation
in software defined networks. IEEE Communications Letters,
21(4):785–788, 2017.

[11] Shrinivas Petale and Jaisingh Thangaraj. Link failure recovery
mechanism in software defined networks. IEEE Journal on
Selected Areas in Communications, 38(7):1285–1292, 2020.

[12] Antonio Capone, Carmelo Cascone, Alessandro Q. T. Nguyen,
and Brunilde Sansò. Detour planning for fast and reliable failure
recovery in sdn with openstate. In 2015 11th International
Conference on the Design of Reliable Communication Networks
(DRCN), pages 25–32, 2015.

[13] Carmelo Cascone, Luca Pollini, Davide Sanvito, Antonio Capone,
and Brunilde Sansó. Spider: Fault resilient sdn pipeline with
recovery delay guarantees. In 2016 IEEE NetSoft Conference and
Workshops (NetSoft), pages 296–302, 2016.

[14] Saumya Hegde, Shashidhar G. Koolagudi, and Swapan Bhat-
tacharya. Path restoration in source routed software defined
networks. In 2017 Ninth International Conference on Ubiquitous
and Future Networks (ICUFN), pages 720–725, 2017.

[15] Ryu controller. https://ryu-sdn.org/. Accessed: 2023-07-23.
[16] Renma Iwamoto and Yasuhiro Sato. Design of the configuration

engines with ryu rest api in database-oriented sdn architecture. In
Proceedings of the 2023 12th International Conference on Net-
works, Communication and Computing, ICNCC ’23, page 52–56,
New York, NY, USA, 2024. Association for Computing Machinery.

[17] Shanu Bhardwaj and S. N. Panda. Performance evaluation using
ryu sdn controller in software-defined networking environment.
Wirel. Pers. Commun., 122(1):701–723, jan 2022.

[18] Shanu Bhardwaj and Ashish Girdhar. Network traffic analysis
in software-defined networking using ryu controller. Wirel. Pers.
Commun., 132(3):1797–1818, jul 2023.

[19] Qian Li, Zongrui Ding, Xiaopeng Tong, Geng Wu, Sašo Sto-
janovski, Thomas Luetzenkirchen, Abhijeet Kolekar, Sangeetha
Bangolae, and Sudeep Palat. 6g cloud-native system: Vision, chal-
lenges, architecture framework and enabling technologies. IEEE
Access, 10:96602–96625, 2022.

[20] Md. Abu Baker Siddiki Abir, Mostafa Zaman Chowdhury, and
Yeong Min Jang. Software-defined uav networks for 6g systems:
Requirements, opportunities, emerging techniques, challenges, and
research directions. IEEE Open Journal of the Communications
Society, 4:2487–2547, 2023.

[21] Qingyue Long, Yanliang Chen, Haijun Zhang, and Xianfu Lei.
Software defined 5g and 6g networks: a survey. Mob. Netw. Appl.,
27(5):1792–1812, oct 2022.

[22] Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-
Ros, and Albert Cabellos-Aparicio. Unveiling the potential of graph
neural networks for network modelling and optimization in sdn. In
Proceedings of the 2019 ACM Symposium on SDN Research, SOSR
’19, page 140–151, New York, NY, USA, 2019. Association for
Computing Machinery.

[23] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-
Ros, and Albert Cabellos-Aparicio. Routenet: Leveraging graph
neural networks for network modeling and optimization in sdn.
IEEE Journal on Selected Areas in Communications, 38(10):2260–
2270, 2020.

[24] Chuanhuang Li, Jiali Lou, Shiyuan Liu, Zebin Chen, and Xiaoyong
Yuan. Shapley explainer - an interpretation method for gnns used
in sdn. In GLOBECOM 2022 - 2022 IEEE Global Communications
Conference, pages 5534–5540, 2022.

[25] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1):4–24, 2021.

[26] Danda B. Rawat and Swetha R. Reddy. Software defined network-
ing architecture, security and energy efficiency: A survey. IEEE
Communications Surveys Tutorials, 19(1):325–346, 2017.

[27] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed
sdn control: Survey, taxonomy, and challenges. IEEE Communi-
cations Surveys Tutorials, 20(1):333–354, 2018.

[28] IEEE 802.1 Working Group. Link layer discovery protocol (lldp).
PDF, 2002.

[29] Aijun Wang, Acee Lindem, Jie Dong, Ketan Talaulikar, and Peter
Psenak. OSPF Extension for Prefix Originator. Internet-Draft draft-
ietf-lsr-ospf-prefix-originator-00, Internet Engineering Task Force,
February 2019. Work in Progress.

[30] Internet Engineering Task Force. Bidirectional forwarding detec-
tion (bfd), 2010.

[31] Jiarong Xing, Ang Chen, and T. S. Eugene Ng. Secure state
migration in the data plane. In Proceedings of the Workshop
on Secure Programmable Network Infrastructure, SPIN ’20, page
28–34, New York, NY, USA, 2020. Association for Computing
Machinery.

[32] Tensorflow. https://www.tensorflow.org/. Accessed: 2023-07-28.
[33] Networkx - network analysis in python. https://networkx.org/.

Accessed: 2023-07-28.
[34] Mininet - an instant virtual network on your laptop/a pc.

https://mininet.org/. Accessed: 2023-09-20.
[35] Gns3 - your virtual network in a suitcase.

https://www.gns3.com/software. Accessed: 2023-09-20.
[36] N. Falkner R. Bowden S. Knight, H. Nguyen and M. Roughan.

The internet topology zoo, 2024. Accessed: 2024-05-29.

Authorized licensed use limited to: University of York. Downloaded on September 09,2024 at 09:59:03 UTC from IEEE Xplore. Restrictions apply.

