Battery Depletion Attack through Packet Injection on IoT Thread Mesh Network

Poonam Yadav, Nirdesh Sagathia, Dan Wade

University of York, UK

poonam.yadav@york.ac.uk

Ohttps://github.com/SystronLab/ThreadBatteryAttack/

Abstract

In the rapidly expanding landscape of Internet of Things (IoT) device manufacturing and deployment, concerns about security have become prominent. This demonstration involves practical attacks on a thread-mesh network within a controlled environment, exploiting vulnerabilities in various components of the Thread network stack. Our attack vectors successfully identified nearby Thread networks and devices by gathering 2-byte Personal Area Network ID (PAN ID) and device frequency information, serving as reconnaissance for potential additional attacks. The focus was on investigating susceptibility to replay attacks and packet injection into thread-mesh networks. Although the experiment attempted to capture thread packets to emulate an authorised sender, the cryptographic encryption and sequence numbers employed for integrity checks resulted in packet rejection by the network. Despite this, our successful injection of packets highlights the potential for battery depletion attacks.

Router using the PSKc key generated during the network formation. The commissioner then conveys the details of the new device to the border router, which initiates a connection to the new device using Datagram Transport Layer Security (DTLS) and adds it to the network by sharing the network key.

Thread Network Setup

• Setting Up a Border Router: A Raspberry Pi 3B is connected to an nRF52840 USB dongle to operate the OpenThread border router software, which is freely accessible from OpenThread. Google introduced OpenThread (openthread.io) as an opensource implementation of Thread, aiming to enhance the accessibility of networking technology used in Google Nest products for a wider developer audience. This move seeks to expedite the development of products for connected homes and commercial buildings. With a concise platform abstraction layer and a small memory footprint, OpenThread (OT) is highly portable, supporting both System-on-Chip (SoC) and Co-Processor (RCP, NCP) designs. The Border Router functions as the external gateway for the Thread network, establishing a connection between the Thread network and other IP-based networks like Wi-Fi or Ethernet. Additionally, it facilitates the formation of a Thread network and supports external commissioning, enabling the seamless addition of new devices to the Thread network using a phone app. Moreover, it offers features to display a network diagram and provide valuable information about the network.

The figure shows how an external commissioning device interacts with the Thread network.

The OpenThread Commissioner Android App.

Results

Doen Sniffer 802.15.4 / Zigbee / 6LowPan	HOME Settings	ED scanner CT Mode Injection Mode Network scan
RUN		STOPPED
IN	JECTION S	SETTINGS
Frequency / Channel		Modulation
2425/15	✓ MH2/-	O-QPSK-250 (compliant) v
Transmitted power level		RX enabled after send
[3.0	∽ dBm	o Yes 🔹 No
Number of packet repeat		Time space between packets
	10	10 ms
Packet payload ¹		
Bytes: 35 + 2 (CRC)		AutoCRC CLEAR
69982B341200A4004000 489BDADC	D269E00000140	B9CA723FC8009B1EF41F72E0744FD2
Estimated time of Injecting		
Lotinicted entre of injecting	0.002	
	~ 0.002 s	seconds
	STA	RT
Warning: Accomplishment of region responsibility.	anal distinctions of re	egulatory requirements is on your own
1 Allowed is: 2 hexadecimal numb	ers in this range {0-	9, a-f, A-F}.

Open Sniffer Packet Injection Setting.

	1	0.000000	fe80::6c8e:fb4	12:424:81fc	ffe	92::1			MLE	71	Advert	isement	
	2	0.289253	fe80::a424:69b	9:7990:f49a	ffe	2::1			MLE	71	Advert	isement	
_	3	16.792624	::ff:fe80:4000		f	ff:fe00:a4	00		UDP	35	49155	- 1234	Len=5
	4	16.794129				111000144			TEEE 8	5	Ack	1104	Lett 0
-	5	30.863786	fe80::147a:ff3	3c:d1c4:4633	ffe	2::1			MLE	71	Advert	isement	
1	6	32.242846	fe80::a424:69b	9:7990:f49a	ffe	12::1			MLE	71	Advert	isement	
1	7	33 349766	fe80::6c8e:fb4	12:424:81fc	ffe	2::1			MLE	71	Advert	isement	
		48 236212	0x4000	2142410110	0 Y a	400			TEEE 8	37	Data	Dst: Ax	a400
	ğ	48 237788	0,4000		0.00	1400			TEEE 8	5	Ack	030. 07	
-	10	50.262818	fe80::a424:69b	9:7990:f49a	ffe	2::1			MLE	71	Advert	isement	
Ŀ	11	54.766719	::ff:fe00:4000)	:: 1	ff:fe00:a4	00		UDP	35	49155	- 1234	Len=5
	12	54.768225							IEEE 8	5	Ack		
	Frame :	11: 35 byt	es on wire (280	0 bits), 35 b	ytes c	captured (280 bits)) on interfac	e -, id 0	Ð		0000	69 98
-	IEEE 8	02.15.4 Da	ita, Dst: 0xa400	0, Src: 0x400	Θ							0010	b9 ca
	▶ Fram	e Control	Field: 0x9869,	Frame Type:	Data,	Security	Enabled,	Acknowledge	Request,	PAN I	D Compr	0020	ap ee
	Sequ	ence Numbe	er: 43										
	Dest	ination PA	AN: 0x1234										
	Dest	ination: @	9xa400										
	Sour	ce: 0x4000	9										
	[Ext	ended Sour	rce: a6:24:69:b	9:79:90:f4:9a	(a6:2	24:69:b9:7	9:90:f4:9	9a)]					

The diagram depicts simplified blocks of a Thread network.

• Forming a Thread Network: A network can be created through a web interface on the Border Router. The procedure involves specifying a network name and a passphrase. The passphrase is used to generate the Pre-Shared Key for the Commissioner (PSKc), enabling an external commissioning device to authenticate and commission new devices onto the network.

← → C 🛕 Not secure 192.168.4.38						
OT Border Router	Form					
A Home	Form Thread Networks					
(+) Join	Network Name * Network OpenThreadDemo 11/16	work Extended PAN ID * 11111122222222				
🖸 Form	PAN ID * Pass 0x1234 12:	sphrase/Commissioner Credential * 3456				
	Network Key* Char 00112233445566778899aabbccddeeff 15	nnel*				
🗱 Settings	On-Mesh Prefix * fd11:22::					
Commission						
Topology	FORM					

nRF52840 DK used as a Thread node, with its QR code to allow it to be commissioned onto the network.

v=1&&eui=<new device Extended Unique
Identifer>&&cc=<passphrase>

The extended unique identifier (EUI) of the device can be obtained by running the command "eui64" on the new device when connected over serial. Once the QR code is scanned, the app will wait for the device to complete the joining process. This step must be manually completed through the command line on the new device by enabling the network interface (ifconfig up') and initiating the join process (joiner start < passphrase >'). Afterward, wait a few minutes to receive a success message both on the command line and in the app. To connect the device to the Thread network, simply execute the command 'thread start'.

Replay and Battery Depletion Attack Setup

We observe the UDP packet 3, which we captured earlier, being successfully replayed into the network as packet number 11.

Acknowledgment

The border router web interface.

• Commissing a New Device: The method employed for commissioning new devices onto the Thread Network is known as external commissioning. In this process, a device that is not part of the Thread network commissions new devices onto the network using various methods, such as the command line or a phone app. Additionally, it is possible to commission a new device without an external commissioner, a method known as On-Mesh Commissioning. However, using the app proved to be more straightforward and convenient, eliminating the need for manually running a set of commands.

An external device, not part of the Thread network, can add a device to the Thread network by authenticating with the Border

This work is supported in part by EPSRC grants EP/X525856/1, EP/X040518/1 and EP/Y019229/1.

Engineering and Physical Sciences Research Council