
Battery Depletion Attack through Packet
Injection on IoT Thread Mesh Network
Poonam Yadav, Nirdesh Sagathia, Dan Wade
University of York, UK

poonam.yadav@york.ac.uk
�https://github.com/SystronLab/ThreadBatteryAttack/

Abstract

In the rapidly expanding landscape of Internet of Things (IoT) de-
vice manufacturing and deployment, concerns about security have
become prominent. This demonstration involves practical attacks
on a thread-mesh network within a controlled environment, exploit-
ing vulnerabilities in various components of the Thread network
stack. Our attack vectors successfully identified nearby Thread
networks and devices by gathering 2-byte Personal Area Network
ID (PAN ID) and device frequency information, serving as recon-
naissance for potential additional attacks. The focus was on in-
vestigating susceptibility to replay attacks and packet injection into
thread-mesh networks. Although the experiment attempted to cap-
ture thread packets to emulate an authorised sender, the crypto-
graphic encryption and sequence numbers employed for integrity
checks resulted in packet rejection by the network. Despite this,
our successful injection of packets highlights the potential for bat-
tery depletion attacks.

Thread Network Setup

• Setting Up a Border Router: A Raspberry Pi 3B is connected
to an nRF52840 USB dongle to operate the OpenThread bor-
der router software, which is freely accessible from OpenThread.
Google introduced OpenThread (openthread.io) as an open-
source implementation of Thread, aiming to enhance the acces-
sibility of networking technology used in Google Nest products
for a wider developer audience. This move seeks to expedite the
development of products for connected homes and commercial
buildings. With a concise platform abstraction layer and a small
memory footprint, OpenThread (OT) is highly portable, support-
ing both System-on-Chip (SoC) and Co-Processor (RCP, NCP)
designs. The Border Router functions as the external gateway
for the Thread network, establishing a connection between the
Thread network and other IP-based networks like Wi-Fi or Ether-
net. Additionally, it facilitates the formation of a Thread network
and supports external commissioning, enabling the seamless ad-
dition of new devices to the Thread network using a phone app.
Moreover, it offers features to display a network diagram and
provide valuable information about the network.

The diagram depicts simplified blocks of a Thread network.

• Forming a Thread Network: A network can be created through
a web interface on the Border Router. The procedure involves
specifying a network name and a passphrase. The passphrase
is used to generate the Pre-Shared Key for the Commissioner
(PSKc), enabling an external commissioning device to authen-
ticate and commission new devices onto the network.

The border router web interface.

• Commissing a New Device: The method employed for com-
missioning new devices onto the Thread Network is known as ex-
ternal commissioning. In this process, a device that is not part of
the Thread network commissions new devices onto the network
using various methods, such as the command line or a phone app.
Additionally, it is possible to commission a new device without
an external commissioner, a method known as On-Mesh Com-
missioning. However, using the app proved to be more straight-
forward and convenient, eliminating the need for manually run-
ning a set of commands.
An external device, not part of the Thread network, can add a
device to the Thread network by authenticating with the Border

Router using the PSKc key generated during the network for-
mation. The commissioner then conveys the details of the new
device to the border router, which initiates a connection to the
new device using Datagram Transport Layer Security (DTLS)
and adds it to the network by sharing the network key.

The figure shows how an external commissioning device interacts with the
Thread network.

The OpenThread Commissioner Android App.

nRF52840 DK used as a Thread node, with its QR code to allow it to be commis-
sioned onto the network.

v=1&&eui=<new device Extended Unique
Identifer>&&cc=<passphrase>

The extended unique identifier (EUI) of the device can be obtained
by running the command ”eui64” on the new device when con-
nected over serial. Once the QR code is scanned, the app will wait
for the device to complete the joining process. This step must be
manually completed through the command line on the new device
by enabling the network interface (ifconfig up’) and initiating the
join process (joiner start < passphrase >’). Afterward, wait a few
minutes to receive a success message both on the command line and
in the app. To connect the device to the Thread network, simply ex-
ecute the command ‘thread start’.

Replay and Battery Depletion Attack Setup

Thread Topology 
Monitor

Thread link

Thread link

eero Gateway

Thread link

USB connection

USB connection

Thread link

Wifi

Cellular /
Broadband 

Thread 
Mesh 
NetworkOpenThread Border 

Router composed of 
Raspberry Pi 4 and 
nRF52840 USB 
dongle.

nrf52840 DK

nrf52840 DKnrf52840 DK

Internet

nrf52840  as a 
Sniffer

Opensniffer used for network 
scanning and packet injection to 
execute an attack.

The diagram illustrates the experimental network configura-
tion at Systron Lab. It features nRF52840 Development Kits
(https://www.nordicsemi.com/Products/nRF52840) as Thread nodes and a
Border Router, consisting of a Raspberry Pi connected to an nRF52840 USB
dongle, for establishing a Thread mesh network. The Border Router interfaces
with an eero gateway. All Nordic Development kits communicate wirelessly via
IEEE 802.15.4, with USB connections to laptops/computers exclusively used for
serial connections. An nRF52840 connected to a PC acts as a sniffer. Network
scanning and packet injection for conducting attacks are carried out using the
Sewio OpenSniffer. Please note that both the packet sniffer and packet injector
exist externally to the network.

Results

Open Sniffer Packet Injection Setting.

We observe the UDP packet 3, which we captured earlier, being successfully
replayed into the network as packet number 11.

Acknowledgment

This work is supported in part by EPSRC grants EP/X525856/1,
EP/X040518/1 and EP/Y019229/1.


