
ar
X

iv
:2

40
5.

17
43

5v
2 

 [
cs

.R
O

] 
 3

 J
ul

 2
02

5

Data Authorisation and Validation in

Autonomous Vehicles: A Critical Review ∗

Reem Alhabib and Poonam Yadav

Computer Science, University of York.

*Corresponding author(s). E-mail(s): reem.alhabib@york.ac.uk;
poonam.yadav@york.ac.uk;

Abstract

Autonomous Vehicles (AVs) are becoming increasingly prevalent due to their
potential to improve road safety and reduce environmental impact. These vehi-
cles rely on Automated Driving Systems (ADS), which integrate multiple sensors
and actuators. While some AVs operate with minimal human intervention, fully
autonomous systems eliminate the need for human control entirely. Despite
advances in AV technologies, secure and trustworthy data management remains
a significant challenge.
This survey focuses on two relatively underexplored aspects in AV environ-
ments: data authorisation and validation. It examines the key related challenges
and reviews existing solutions. The findings highlight critical gaps in cur-
rent approaches and suggest future research directions to enhance AV data
authorisation and validation.

Keywords: Autonomous Vehicle, Automated Driving System, Data Authorisation,
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1 Introduction

AVs are an innovation in the automotive sector as they provide safer, more effec-
tive, and ecologically friendly transportation options [1, 2]. In addition, they have the
potential to significantly contribute to economic growth through various aspects. For
example, they can substantially decrease the number of traffic accidents, leading to
considerable economic savings [3]. Moreover, their impact on land use is notable, as
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repurposing parking areas for the real estate industry can increase land value by 5%
[4, 5]. Accordingly, in recent years, prominent automotive manufacturers have invested
substantially in a diverse range of AV technologies, amounting to billions of dollars.
Several sources estimate that the AV market share will take between 15 and 20 years
to reach 25 percent globally [6]. In line with this trend and industrial development,
governments worldwide provide guidance that allows and encourages on-road AV tri-
als. For example, the UK published a code of practice (2019) that specifies certain
road trials that include various levels of automation [7]. Subsequently, in early 2022,
the government changed the Highway Code to ensure the first self-driving vehicles are
introduced safely on the roads [8].

The Automated Driving System (ADS) is an integrated vehicle system that utilises
various in-vehicle technologies and sensors to navigate autonomously from a starting
point to a predefined destination. It comprises multiple control units that design a
system to complete all driving tasks without human intervention. Cameras, GPS, and
other sensors are connected to exchange data to facilitate independent driving deci-
sions. These systems operate in a dynamic environment that demands real-time, rapid
data feeding from various sources, including external roadsides and other vehicles,
to the onboard sensors, which need to make continuous control decisions. Ensuring
trust in automated driving systems relies heavily on the integrity and reliability of the
surrounding data ecosystem. Thus, optimising data use is essential to improve the func-
tionality of autonomous car systems. However, data collection, generation, processing,
and storage challenges present critical research areas. Issues such as data privacy,
integrity, and accessibility must be addressed to ensure reliable decision-making in
real-time. As the complexity of these data interactions increases, innovative solutions
are required to manage and safeguard the vast amounts of information generated by
ADS.

While previous surveys have explored data security and privacy in AV systems, they
often lack a dedicated focus on authorisation and validation mechanisms or discuss
these aspects only at specific stages rather than across the entire data lifecycle. This
paper critically examines the data aspects of AVs and provides an overview of ADS
technology. In particular, it offers important insights into the definition, structure,
data flow, ownership dynamics, and difficulties associated with AVs. Its systematic
method strengthens credibility and advances knowledge of the consequences of AV
data management.

1.1 Contribution

This paper aims to provide a comprehensive understanding of data and information
flow in AV with a particular focus on authorisation and validation challenges across
different data processing stages. Unlike previous surveys that primarily examine secu-
rity, privacy, or general validation frameworks, our study provides a stage-specific
analysis of data authorisation and validation challenges. As shown in Table 1, existing
surveys often focus on specific aspects, such as security risks, blockchain-based access
control, or legal considerations, while our work systematically categorises these chal-
lenges based on the data flow stages: collection, transmission, processing, actuation
and storage.
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1.2 Paper Structure

In this paper, section 2 provides a brief overview of ADS, describing the informa-
tion required to understand the structure and installation of these vehicles and all
related technologies, including an overview of ADS’s potential benefits and costs. It
also introduces key data authorisation and validation concepts, explaining their roles
in ensuring secure and accurate data handling. Section 3 discusses various data man-
agement issues, with each subsection addressing the requirements, current problems,
and gaps and presenting solutions for each data lifecycle stage. Section 4 reviews
other related concerns, such as security, privacy, and ethics. Section 5 considers open
questions and future work.

1.3 Methodology

This section describes, as in Figure 1, the methodical review strategy used to make
the search for and choosing a review strategy transparent and clear. The methodology
of this survey follows a systematic approach aimed at understanding authorisation
and validation within the data lifecycle of autonomous vehicles. It begins with a focus
on identifying relevant studies through specific inclusion and exclusion criteria, ensur-
ing that only those addressing data-specific challenges are considered. In addition,
selected studies were mapped to various lifecycle stages (such as data sources, edge
computing, and cloud storage) to evaluate their impact on authorisation and valida-
tion solutions. A systematic search was conducted in major academic databases using
targeted keywords to gather relevant literature.

Table 1: Comparison of Existing Surveys. The table presents a
comparison of existing surveys with respect to their coverage of
data validation and authorisation stages.

Survey Focus Validation Validation
Stage

Author-
isation

Authori-
sation
Stage

[9] Security and
privacy in
AVs

✗ Not
discussed

Partly Data trans-
mission, data
storage

[10] Privacy and
security of
Autonomous
Connected
Vehicles

Partly Data
exchange
and
processing

Partly Data
exchange
and commu-
nication

[11] Data secu-
rity in
autonomous
driving

✗ Not covered Partly Communication
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(Continued)
Survey Focus Validation Validation

Stage
Author-
isation

Authori-
sation
Stage

[12] Data secu-
rity in
autonomous
driving

✗ Not covered Partly Data col-
lection and
exchanging

[13] Validation
frameworks
for AVs

Partly System-
level
validation,
testing

✗ Not covered

[14] Explanations
in auto-
mated
driving
systems

Partly Model vali-
dation, deci-
sion assess-
ment

✗ Not covered

[15] Software
V&V in AVs

Partly Training
and testing

✗ Not covered

This
Work

Data vali-
dation and
authori-
sation in
AVs

✓ Covers all
stages

✓ Covers all
stages

2 Background

This section provides a comprehensive overview of the technological foundation of
ADS in AVs, including the core components, communication frameworks, and main
definitions. It provides foundational definitions to frame the current landscape of
autonomous vehicle (AV) technologies.

2.1 Automated Driving System (ADS)

Continuous innovations have shaped the development of autonomous vehicles (AVs).
Figure 2 illustrates the evolution of AVs, highlighting key technological and regulatory
milestones from the 1950s to 2025. It begins with the introduction of cruise control in
1958 and includes key milestones such as the integration of road-recognition cameras
in 1977.

Driving Assistance Systems (DAS) have played a foundational role in the evolution
of AVs, providing critical support for vehicle control and safety. The first generation
of DAS utilised sensors that assessed a vehicle’s internal condition, primarily focused
on safety and stability. In the 1980s, DAS included systems like Traction Control Sys-
tems (TCS) and Anti-lock Braking Systems (ABS), which aimed to improve dynamic
vehicle stability [16]. In 1995, Electronic Stability Control (ESC) was introduced to
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further enhance vehicle stability. The second generation of DAS, emerging in the
early 1990s, sensors were classified as exteroceptive sensors (e.g., RADAR, LiDAR,
and cameras) to detect the external driving environment [17]. The most recent gen-
eration of DAS, Advanced Driver Assist Systems (ADAS), has been developed to
prevent collisions. A major turning point came in 2004 with the DARPA Grand Chal-
lenge, which accelerated AV research and development [18]. Subsequently, In 2006,
the European Land-Robot Trials (ELROB) continued this movement by showcas-
ing semi-autonomous vehicle capabilities. Major car manufacturers began developing
automated vehicle technology in 2010. In 2014, Google introduced its first AV proto-
type [19], followed by Tesla integrated of automobile software for AVs in 2015. In the
same year, and Ford commenced AV testing in California [20]. Alongside technologi-
cal progress, regulatory frameworks have rapidly evolved. Between 2018 and 2020, the
National Highway Traffic Safety Administration (NHTSA) proposed new AV guidance
[21]. By 2021, Ford and General Motors had significantly invested in AV technology.
Correspondingly, Robotaxi services were introduced by Chinese companies and tech
giants like Baidu, Amazon, and Google in 2022 [22, 23]. The year 2023 saw the Euro-
pean Union developing AV regulations, the NHTSA issuing updated guidance for AV
manufacturers, and China continuing to expand its regulations [24, 25]. In 2024, the
UK introduced the AV Bill to establish safety regulations for AVs, setting the stage
for these vehicles to operate on British roads by 2026 [26]. Additionally, In January
2025, the NHTSA proposed the AV Safety and Transparency Evaluation Program (AV
STEP). This voluntary program invites vehicle manufacturers, Automated Driving
System (ADS) developers, fleet operators, and system integrators to submit detailed
information about their AV [27]. These developments reflect the global momentum
toward integrating AVs into transportation systems. While an autonomous vehicle
(AV) refers to the entire system, including body, mechanical controls, and user inter-
faces, the Automated Driving System (ADS) denotes explicitly the hardware and
software responsible for performing dynamic driving tasks. For clarity, this paper refers
to the ADS when discussing the technical system enabling vehicle autonomy.

2.2 AV Definition

Autonomous refers to a system’s ability to change its behaviour in response to unantic-
ipated events during operation [28]. According to NHTSA [29], an autonomous vehicle
is one as which at least aspects of a safety-critical control function (e.g., steering,
throttle, or braking) occur without direct driver input. However, vehicles that provide
safety warnings to drivers (for example, forward crash signs) but do not perform a
control function are not considered automated.

In September 2018, the NHTSA performed an extensive literature review of all
the generic AV system features to identify the attributes that define the operational
design domain (ODD). The comprehensive review resulted in 24 ADS features, specifi-
cally describing functionality and proposed timelines for commercial deployment across
the different Society of Automotive Engineers (SAE) International levels of driving
automation. Accordingly, the SAE’s six-level taxonomy has become the widespread
industry standard[30]:
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Level 0: No Automation – The human driver performs all driving tasks, and any
system support (like warning systems) does not automate driving.
Level 1: Driver Assistance – The vehicle may assist with a specific task, such as
steering or acceleration, but the driver must remain in control and perform all
remaining aspects of driving.
Level 2: Partial Driving Automation – The vehicle can control both steering
and acceleration/deceleration, but the driver is responsible for monitoring the
environment and must remain engaged at all times.
Level 3: Conditional Driving Automation – The vehicle can handle all aspects of
driving in specific conditions or environments, but the driver must be prepared to
take over when requested.
Level 4: High Driving Automation – The vehicle is capable of performing all driving
tasks in specific conditions (such as certain road types or geofenced areas), and
driver intervention is not required, though manual control is possible.
Level 5: Full Driving Automation – The vehicle performs all driving tasks in all
conditions and environments, with no need for driver intervention at any time.

2.3 AV Architecture

Researchers studying AV focus on two main areas: defining their components and
understanding their functional perspective. Some papers focus on the technical aspects
of AV components, such as in [31], while others take a functional approach [32, 33].
From a technical perspective, AVs have two main layers: hardware and software.
Each layer is comprised of several subcomponents. There is some disagreement among
researchers about categorising the core competencies of different subsystems when
defining the functional perspective of AVs.

However, in general, AV systems are made up of three to five primary functions:
perception, localisation, planning, control and navigation, and system manage-
ment [14, 34], as illustrated in Figure 3.

In the Figure, the several AV fundamental operations are as follows:

1. Perception refers to collecting data and extracting relevant understanding from
the environment, such as the detection of road signs, as well as object detection
and classification [35, 36]. These detection tasks are performed by various sensors
such as cameras and Radio Detection And Ranging (RADAR).

2. Localisation refers to the ability of the AV system to determine the vehicle’s
position and orientation relative to the environment.

3. Planning consists of three stages:

- Using algorithms, the path planner calculates the most efficient geometric path.
- The behaviour planner determines the optimal behaviour based on the path
planned by the path planner.

- The estimation of the best possible route subject to vehicle dynamics and
environmental constraints [32].

4. Control refers to executing planned actions and managing the vehicle’s motions,
such as changing lanes [14, 35].
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5. System management includes all the functions related to event data recorders,
human-machine interactions involving in-vehicle interfaces [14], and external
human-machine interfaces.

1

3

2

5
4

1. Perception: Sensors (cameras, RADAR) for detection tasks.
2. Localisation: Determines position and orientation.
3. Planning: Path, behaviour, and route planning.
4. Control: Executes actions and manages motions.
5. System Management: Event recording, human-machine

interfaces.

Fig. 3 Autonomous Vehicle (AV) Main Operations This diagram illustrates the main oper-
ations of an AV. It highlights five key areas: (1) Perception, where sensors such as cameras and
RADAR collect data and detect objects; (2) Localisation, which determines the vehicle’s position and
orientation; (3) Planning, involving path, behaviour, and route planning; (4) Control, which executes
the planned actions and manages the vehicle’s motions; and (5) System Management, responsible for
event recording and human-machine interfaces

An alternative architectural approach, such as in [37], divides AV systems into two
primary components: the perception system and the decision-making system. While
the perception system is further broken down into subsystems in charge of tasks like
localisation, static obstacle mapping, and moving obstacle detection, the decision-
making system is segmented into tasks like route planning, path planning, behaviour
selection, and motion planning. This approach organises the autonomy system of
the AV by highlighting discrete levels of perception and decision-making. Architec-
tural paradigms like end-to-end and layered architecture further classify AV system
designs[38]. The layered architecture divides the system into perception, including
simultaneous localisation and mapping (SLAM), planning, and control layers, ensur-
ing a modular and structured approach. While the end-to-end architecture processes
raw sensor data directly to output control commands using deep learning techniques,
providing reduced system complexity.
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Sensors and Sensors Fusion
For an AV vehicle to have a high-quality and real-time understanding of its sur-
rounding environment, it must quickly and accurately detect, comprehend, and track
all objects. As a result, relying on a single source to generate all necessary data is
impossible. Multiple sensors are equipped to provide both perceptual and location
views of the environment, allowing the vehicle to make real-time decisions. Sensors
are devices that translate detected objects or changes in the surrounding environment
into quantitative measurements for processing [33].
Sensors Types

AV systems, while having some variations, all consist of two primary types of sensors
based on their operational principle: Exteroceptive and Proprioceptive. Exteroceptive
sensors are external state sensors that are utilised to perceive the environment, such
as calculating the distance to objects or light intensity from the surroundings of the
system. Examples of these sensors include cameras, RADAR, etcetera. Proprioceptive
sensors, on the other hand, are internal state sensors that capture the dynamic state
and measure the internal values of a dynamic system. Examples of this type of sensor
include Global Positioning Systems (GPS), encoders, accelerometers, etc. [33, 39].
The most commonly used sensors for AV are listed in Table 2. In addition, Ahangar
et al. [40] provided a detailed comparison of sensors and their individual challenges.
As each sensor has different advantages and limitations in other aspects, integrating
sensors is necessary to obtain an optimal perspective, and this operation is known as
”sensor fusion”.

Sensor Fusion

The advantage of this operation is to combine the data originating from different
sources to complete each other’s functions to provide an improved outcome in some
specific criteria and data aspects for decision tasks [41]. The best example to explain
the benefit of this method is to fuse RADAR sensors and camera images, where
these sensors have different strengths and weaknesses. RADAR is not affected by the
illumination of the environment, but it is not able to provide accurate data regarding
an object’s body. On the other hand, the Camera’s image could provide these data,
however, it may provide conflicting data under some illumination conditions [42].
The initial step in data fusion is sensor calibration, which means notifying the ADS
regarding the sensors’ position and orientation to collect and associate the data
in space and time [43]. While the various sensors capture data in relation to the
same object, the produced data could be combined to obtain different information
to achieve higher-quality output. Other explicit examples with details and fusion
techniques are discussed by Campbell et al. [42] and Fayyad et al. [39].
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Table 2 Most Commonly Used Sensors. The table lists the most commonly used sensors in
AVs, categorised into exteroceptive and proprioceptive sensors. Exteroceptive sensors gather
information from the external environment, while proprioceptive sensors provide information about
the vehicle’s internal state.

Exteroceptive Sensors

Sensor Function

Light Detection and Ranging (LiDAR ) Uses light beams to provide a 360-degree distance between an object and the
car.

Radio Detection and Ranging (RADAR) Uses radio waves to determine the distance between an object and the car.
Camera provides images of the environment to interpret data.
Ultrasonic Used for short-distance object detection, such as parking.

Proprioceptive Sensors

GPS (Global Positioning System) Locates the vehicle.
IMU (Inertial Measurement Unit) Measures acceleration and angular rate.
Encoders Provide feedback signals used in speed and/or position control.
Accelerometers Measure acceleration.

2.4 Communication in Autonomous Vehicles

AVs are able to communicate with any compatible systems, including other AVs,
infrastructure, and pedestrians. This communication is known as Vehicle to Every-
thing (V2X) technology, referring to how the vehicle communicates with everything.
The network must be continuously fast, reliable, and secure to achieve an efficient
cooperative environment with minimal delay (latency). Specifically, there are two main
tendencies used all over the world: the wireless standard 802.11p or mobile networks,
especially 5G [44–46]. In the foreseeable future, sixth-generation (6G) wireless systems
will be crucial for V2X communications in AV [47, 48].

The differences between conventional and automated vehicles are apparent; how-
ever, the concept of connected vehicles represents a distinct phase in automotive
technology. While the literature sometimes blurs the distinction between connected
vehicles and automated vehicles (AVs), connected technology is a critical step toward
achieving full automation. A connected vehicle is part of the Internet of Things (IoT),
enabling data exchange, software updates, and communication with other vehicles and
infrastructure. In these smart vehicles, all electronic control units (ECUs) and onboard
units (OBUs) are interconnected through multiple digital buses, such as the Con-
troller Area Network (CAN), Ethernet, FlexRay, Local Interconnect Network (LIN),
Media Oriented Systems Transport (MOST) and Bluetooth [49, 50]. Such capabilities
with sensing, communicating with the surroundings, and controlling the driving tasks
represent the AV. The Connected and Automated Vehicle (CAV) is the vehicle that
performs automated driving tasks and connectivity with other vehicles, road users,
the road infrastructure, and the cloud [51].

While conventional cars constitute the vast majority on today’s roads, forecasts
suggest a notable rise in the presence of connected and autonomous vehicles in the
coming years. Expectations indicate that the number of connected cars will reach 700
million by 2030, while the number of AVs will exceed 90 million [49]. Correspondingly,
Zhang et al. [52] address the problem of optimally controlling CAVs under mixed
traffic conditions where both CAVs and conventional vehicles are together on the
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roads. Other studies [53, 54] subsequently aim to address the challenges and oppor-
tunities that arise and to leverage the capabilities of CAVs to enhance traffic flow at
unsignalised intersections while ensuring safety in a mixed traffic environment where
both conventional vehicles and connected and automated vehicles (CAVs) coexist on
the roads.

2.4.1 Communication Technologies

Communication technologies play a critical role in enabling AV to interact with their
environment, improving safety, efficiency, and driving experience. In this section, we
explore several key communication technologies that are vital for vehicular networking,
including Vehicular Ad-Hoc Networks (VANETs), and their associated communication
types such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-
to-Everything (V2X).

Vehicular Ad-Hoc Networks (VANETs):
A group of vehicles connected via a wireless network [55]. This network is a basic part of
the Intelligent Transportation System (ITS) framework to assist various connections:

1. Vehicle-to-vehicle (V2V) communication that allows the vehicles to communicate
with each other and share the necessary information, such as traffic jams. To
establish V2V communication, vehicles should have an On Board Unit (OBU),
Omnidirectional antennas, sensors and actuators, and a Global Positioning System
(GPS) [56].

2. Vehicle-to-Infrastructure (V2I) communication enables the vehicles to interact with
the roadside units RSUs which are fixed devices installed next to the road covering
a dedicated area. These communications are mostly conducted by using wireless
dedicated short-range communications (DSRC), which aims to provide active safety
and convenience services [51].

3. Vehicle-To-Everything (V2X) Communication allows the vehicle to communicate
with other entities using technologies such as Cellular V2X (C-V2X), including 5G
and 6G.

VANETs networks utilise different communication technologies based on their
transmission range, which can be categorised into short, medium, and long-range
communication as shown in Figure 4.

1. Short-range communication includes Bluetooth, Ultra-Wideband (UWB), and
ZigBee, which are wireless communication technologies used for vehicle-to-vehicle
(V2V) communication in dense traffic environments due to their low power con-
sumption and short operational range. Bluetooth, especially Bluetooth 5, the
latest version, offers low-cost, low-energy communication up to 200 m, but faces
interference and delays in dense settings. In contrast, UWB provides robust,
energy-efficient communication with strong obstacle penetration and resistance to
multipath fading, ideal for non-line-of-sight environments. Relative to other wireless
protocols, ZigBee is simple, energy-efficient, and supports self-healing multi-node
networks, though it may suffer interference on shared channels [57].
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Fig. 4 VANET technologies based on transmission Range [40].

2. Medium-range communication relies on Dedicated Short-Range Communi-
cation (DSRC) and Wi-Fi, which provide higher data rates for V2V and V2I
applications.

3. Long-range communication involves Cellular-V2X (C-V2X), 5G NR, and
emerging 6G technologies, which support high-speed, low-latency communication
for advanced AV applications.

Ahangar et al. presented a comprehensive survey regarding different vehicle commu-
nication technologies, their application, limitations, and advantages [40].
5G is suitable for long-range transmission to meet the high-mobility demand architec-
ture; while 6G is still in its conceptualisation phase, although the technology-driven
key performance indicates extremely serves the AV’s communication requirements [58].
In general, various regions prefer DSRC over C-V2X (e.g., USA) due to the heav-
ily deployed infrastructure around the country, however, this recently changed when
Europe decided to move with cellular-based technology for CAVs [59].

In Brussels (2018), the 5G Infrastructure Public-Private Partnership (5G PPP),
which is a cooperative combined initiative between the European Commission and the
European ICT industry (ICT manufacturers, telecommunications operators, service
providers, SMEs, and researcher Institutions, launched to deliver solutions, architec-
tures, and standards for the next generation communication infrastructures [60]. The
survey provided by Hakak et al. [61] highlights and summarises the key projects related
to the 5G AV.

2.5 Autonomous Vehicle Potential Benefits and Costs

Automation technology is a promising future for safety, mobility, environment, and
luxury [62]. It may reduce crash risks by avoiding human error and distracted driving.
Many conventional vehicle crashes occur due to human error and distracted driving.
In the USA, partially automated crash avoidance features could reduce the severity
of as many as 1.3 million crashes every year, including 133,000 injury crashes and
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10,100 fatal crashes [63]. Thus, traffic will disregard poor human driving behaviour
and improve performance in terms of road safety and traffic congestion. In addition,
AV contributes significantly to reducing emissions (worldwide goal to achieve net-zero
by 2050 [64]).
Comparatively, even though adopting automation will increase safety, there are spe-
cific safety concerns related to its development. Its total or partial dependence on
driving assistance systems results in a serious risk with both hardware and software
issues. Additionally, sensors may be compromised due to environmental conditions
such as dangerous weather. Another significant concern is that through cyber attacks,
an automobile and/or its technological environment may be subject to causing grave
privacy and security issues. Other benefits and costs are summarised in Table 3.

2.6 Data Authorisation and Validation in Autonomous
Vehicles Ecosystem

Data plays a critical role in AV. Data is constantly being created, exchanged,
and stored in this dynamic environment, creating challenges in data validation and
authorisation that have not received the needed attention [65].

Table 3 Pros and Cons of applying Autonomous Vehicles.

Pros Cons

Increased safety:
Accidents will be greatly avoided due
to the various assistance systems,
ongoing connection, and connectivity
between vehicles.

Increased infrastructure costs:
AVs require higher standards for road
maintenance and design.

Reduced energy consumption
and pollution:
Since these vehicles are supposed to
run on sustainable energy, carbon and
emissions of greenhouse gases will be
almost nonexistent.

System failure risks:
Hardware/software failures, wrong
data, feeding/processing errors, faster
traffic speeds, and increased overall
vehicle travel are additional collision
causes that may be on the rise.

Reduce traffic congestion:
Although AVs move at a slower speed
in cities, the traffic efficiency will be
higher because of the efficient connec-
tion between vehicles.

Data protection issues:
The network’s environment
causes security and privacy
issues.

Data Authorisation

Data authorisation in the AV field refers to the set of mechanisms and policies that
determine who can access specific data within an AV system, at which stage of the data
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lifecycle, under what conditions and how this access occurs. These mechanisms mainly
draw from well-established models such as attribute-based access control (ABAC) [66],
role-based access control (RBAC) [67], and usage control (UCON) [68].

For instance, during a sensor maintenance operation, only authorised suppliers
can access vehicle performance data for maintenance purposes in the required stage.
Similarly, passengers’ information, such as location history, may only be accessible to
authorised parties (e.g., regulatory bodies) during an investigation, while remaining
restricted at other stages to protect privacy.

Data Validation

Data validation in AV ensures that data used by the AV ecosystem at any stage of the
data lifecycle is accurate, consistent, and reliable. This process includes sensor fusion,
cross-verification, and cryptographic mechanisms to ensure trustworthiness [33, 69].
For instance, the system validates data from multiple sensors to confirm the detection
of an object. Another example is validating accident-related data to ensure its accuracy
and integrity.

Authorisation and Validation Requirements for AV Data

Based on inspiration from the literature, such as [70, 71], this work defines the
Authorisation and Validation Requirements for AV as:

Requirement 1: Access permissions must be distributed among multiple stake-
holder roles (e.g., manufacturer, supplier, user, regulator), each with clearly defined
access rights.

Requirement 2: These access control rules and mechanisms should be adaptable,
allowing for any changes in access rights, and customisable to ensure flexibility as the
system grows and evolves.

Requirement 3: Stakeholders who generate data (e.g., passengers, owners, or
manufacturers) must not have unrestricted access to all aspects of the data.

Requirement 4: Any critical access actions must involve approval from multiple
independent stakeholders to ensure accountability.

Requirement 5: All these critical access actions must be recorded and traceable
through secure logging mechanisms that are only accessible to authorised entities.

Requirement 6: Data validation processes must be conducted by domain experts,
such as cybersecurity analysts and accident detectives to detect any unauthorised
access attempts and ensure data integrity.

Requirement 7: Incorporated security measures must be applied as the data
generated by external sources (e.g. V2X communication) may contain inaccuracies or
malicious inputs.

Requirement 8: Data collected by the vehicle from the environment (e.g. pedes-
trians, other vehicles) may contain third-party information that the entity authorised
to access the vehicle’s data is not authorised to view or process. Mechanisms must
ensure that such data is filtered or anonymised to respect the privacy and rights of
external parties.
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Requirement 9: Critical or personal AV data must not be leaked in any way to
external, unauthorised entities (e.g. service providers or insurance companies) without
explicit agreements.

3 Data Flow in Autonomous Vehicle Systems:
Stages, Challenges, and Solutions

The operation of AV depends on a continuous and efficient flow of data. As illustrated
in Figure 5, this data originates from various sources such as sensors and external
environments, undergoes multiple layers of processing at the local and edge levels,
and eventually is stored or analysed in backend systems. Each of these stages presents
challenges that are unique, common, and intersecting and have been discussed in this
section along with current solutions.
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Fig. 5 Data Flow in an Autonomous Vehicle This diagram depicts the data flow in an AV sys-
tem. It shows how sensor data and external sources are fused and processed through the Perception,
Localisation, Planning, and Control stages. The outputs include Control commands, Data Transmis-
sion (V2X), and Temporary Storage, with all processes contributing to long-term Data at rest storage.
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3.1 Data Sources

The vehicle’s hardware and software systems collect and process substantial data
to operate safely. These data sources might be categorised as sensory observation,
Intelligent Transportation System (ITS), Geographic Information System (GIS) and
map-related sources, social media feeds of drivers or passengers, linked data, archive,
and legacy data [72]. As shown by yellow arrows in Figure 5, these data sources may
alternatively be categorised as:

– Internal Data Sources, which are collected and processed within the vehicle
itself, include:

1. Internal sensor data: These sensors monitor various parameters and parts of the
vehicle’s internal systems, such as engine and brake sensors.

2. Other internal vehicle data (IVD): This includes other data, such as the data
about the owner and data that comes from the vehicle’s status; for example, if
the tank or battery is almost empty.

– External Data Sources are obtained from sources outside of the vehicle itself,
which are crucial for various aspects of driving, navigation, and safety. In the same
Figure 5 these sources include:

1. Vehicle-to-Vehicle (V2V) represents sharing real-time information about other
cars’ speed, direction, and braking status.

2. Vehicle-to-Pedestrian (V2P) communication includes exchanging information
between vehicles and pedestrians or other detected road users, such as cyclists.

3. Vehicle-to-Infrastructure (V2I) refers to the exchanged information between
vehicles and roadside infrastructure or traffic management systems.

4. Vehicle-to-Network (V2N) represents the connection between the vehicle and the
cloud network to access navigation services, real-time traffic updates, weather,
and entertainment content.

5. Vehicle-to-Everything (V2X) refers to the communications between vehicles and
other entities, including cars (V2V), pedestrians (V2P), infrastructure (V2I),
and vehicle-to-network (V2N). In the figure, V2X represents the comprehensive
output integrating processed data from V2V, V2P, V2I, and potentially other
sources, facilitating interaction with the broader environment, including vehicles,
pedestrians, and infrastructure.

Key Challenges

1. Volume and Variety: The vast amount of data generated by AV poses significant
challenges at every stage of its lifecycle. For instance, cameras produce 20–40 MB
of data per second, while Light LiDAR systems generate between 10–70 MB per
second [73]. The overall data volume and variety become extreme challenges with
numerous heterogeneous devices and diverse communication streams. In addition
to this wide variety of types and formats, the AVS must process in real-time to
support effective driving decision-making. Another challenge is the authorisation
to access and use data from these multiple heterogeneous devices and systems,
especially when integrating third-party sensors or external communication streams.
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Since these sources often rely on data from other devices, ensuring secure and
controlled access and sharing is crucial to maintaining trust and safety in the AV
ecosystem.

2. Data Quality and Reliability: Robust data validation is vital to maintain data
integrity, especially in such environments with a high potential for noisy or incom-
plete data. In addition, the flow fusion information from multiple sources must
identify and filter out corrupted or redundant data. Without adequate data valida-
tion and fusion, invalid or incorrect inputs could affect decision-making, potentially
leading to unsafe driving behaviours.

Current Solution

Many recent studies have sought to ensure reliable data management, integrity, and
efficient communication among sources at this stage. This includes data exchanged
between vehicles, RSUs, stations, and data that reaches the sensors inside the vehi-
cle. Some research suggests that blockchain technology could effectively address these
challenges and meet data management requirements at this stage. For example, a
blockchain model has been proposed in [74] that utilises the Hashgraph consensus
algorithm to facilitate decentralised and secure data sharing among nodes. Each node
disseminates information through a gossip protocol, enabling rapid consensus and ver-
ification of data integrity. Furthermore, instead of data encryption, Changvala et al.
proposed a method to hide the integrity of LIDAR and RADAR data. [75]. Similarly,
JAVED et al. [76] proposed a protocol to isolate false data in V2X communications
messages. Another data integrity verification scheme is proposed in [77]; it aligns GPS
data with other information regarding passengers to make sense of the vehicle’s relia-
bility. In addition, leveraging RSUs allows this data integration to be used for integrity
checks. Another approach [78] focuses on a hybrid GNSS data compression method
for autonomous vehicles, enhancing data transmission efficiency and resilience through
frame differencing and entropy coding. Although its applicability may be limited, it
achieves a good compression ratio and maintains reliability.

Additionally, in a notable attempt to improve the quality of sensors’ data, Min
et al. [79] have proposed a framework with two methods: first, a residual consistency
checking algorithm that utilises sensor redundancy to isolate faulty sensors, and sec-
ond, a Denoising Shrinkage Autoencoder (DSAE) that enhances anomaly detection
in sensor data. Despite the algorithm’s inability to isolate the ”Spike” anomalies due
to their brief duration, these methods help ensure that the sensors in AV are working
correctly and provide reliable data. Similarly, to ensure that only trustworthy data is
used for decision-making in AV operations, a study has integrated data quality met-
rics with a trust and reputation model[80]. This mechanism evaluates the correctness
and reliability of real-time data sources based on their past behavior and interac-
tions. While these solutions improve authorisation and data validation for AV data
sources, further research is still needed in these areas and to address challenges like
interoperability in data resources.
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Table 4 Sample Event Data Recorder (EDR) Parameters Captured During a
Vehicle Event [81]

Data Event Value
Maximum Delta-V. Longitudinal (km/h) -61
Time To Maximum Delta-V. Longitudinal(ms) 95.0
Maximum Delta-V Lateral (km/h) -1
Time To Maximum Delta-V Lateral (ms) 72.5
Time To Maximum Delta-V Resultant (ms) 95.0
Ignition Cycle At Event 271
Ignition Cycle Runtime (minutes) 10.3
Odometer At Event Time Zero (km) 30.5
Airbag Warning Lamp Status Off
ABS Warning Indicator Status Off
Vehicle Drive Mode Natural
Driver Safety Belt Status Buckled
Passenger Safety Belt Status Buckled
Occupant Classification Status in Front Passenger Seat Small Adult
Driver Seat Track Position Rearward
2nd Row Left Safety Belt Status Not Buckled
2nd Row Left Seat Occupant Not Occupied
2nd Row Center Safety Belt Status Not Buckled
2nd Row Center Seat Occupant Not Occupied
2nd Row Right Safety Belt Status Buckled
2nd Row Right Seat Occupant Not Occupied
3rd Row Left Safety Belt Status Not Available
3rd Row Left Seat Occupant Not Available
3rd Row Right Safety Belt Status Not Available
3rd Row Right Seat Occupant Not Available
Driver Airbag Deployment 2nd Stage Disposal Yes
Right Front Passenger Airbag Deployment 2nd Stage Disposal Yes
Complete File Recorded Yes

3.2 Local Data Storing

Based on sensors and cameras positioned in various regions inside and outside the
automobile, the vehicle creates and maintains data. According to how many ignition
cycles the car goes through, most of them will hold their data for a while before
replacing it with fresh data. Local storage systems, such as sensor data buffering,
communication cache, and artificial intelligence (AI) models of data, play a critical role
in managing large volumes of data generated by AVs. However, this section focuses on
the event local recorder tools. Besides the data sent to the backend servers and cloud,
an Event Data Recorder (EDR) and Data Storage System for Automated Driving
(DSSAD) are the primary tools for storing significant event data. The rest of this
section focuses on these technologies, their functions, gaps, and current solutions.

3.2.1 Evolution of Transportation Data Recorders

The first practical transportation data recorder was introduced in 1921. It records
vehicle speed, engine RPM, and distance moved onto a rotating circular chart [82].

Figure 6 shows the current development movement of the existing national and
regional activities on this technology. The diagram outlines the global timeline of the
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adoption of the EDR. While South Korea and Japan were early adopters, the EU
mandated EDRs for new and registered vehicles, and the US has ongoing discussions
about implementing them. International organisations like SAE and IWG are working
on developing standards for data loggers, including EDRs

3.2.2 EDR

Event Data Recorder (EDR) is a recording device inside the vehicle that can capture
information regarding an event [82] in a readily usable manner. Its concept is the
same for both AV and conventional vehicles; there is a list of all vehicles with EDR in
[86]. Such devices would support real crash investigations and analyses of performance
due to their data capturing of a few seconds, both pre- and post-crash. Useful and
meaningful data, such as vehicle speed and brake status, are stored. For example,
the Tesla Model 3 (Autopilot) is designed to record data such as how various vehicle
systems were operating, whether or not driver and passenger safety belts were fastened;
how far (if at all) the driver was depressing the accelerator and/or brake pedal; and,
how fast the vehicle was traveling [81]. Table 4 is an example of such recorded data in
detail. The technique behind this device generally stores data with the airbag control
module once deployed. Other recording techniques and event data recorders have been
explained comprehensively in [82].

In December 1996, the National Highway Traffic Safety Administration (NHTSA)
and the National Aeronautics and Space Administration (NASA) cooperated to
improve airbag safety. Consequently, NASA recommended that NHTSA encourage
installing and obtaining crash data for safety analyses from vehicle crash recorders
[82]. It is worth indicating, however, that (EDR- AV), the EDR for automated vehicles,
must considerably exceed the performance of EDR for conventional vehicles (EDR-
CV) [87]. Publications worldwide seek to provide “guidelines for the development
of automated driving functions”, including identifying the technical requirements for
EDR-AV. The Regulation (EU) 2019/2144 sets rules on technical requirements for new
types of motor vehicles to maintain safety and environmental protection [88]. Accord-
ing to that regulation, in June 2022, the EDR is supposed to become mandatory for
all vehicles with SAE Level 3/Level 4 functions [87, 89]. From July 2024, all newly
registered passenger cars in the EU must be equipped with an EDR [89]. In addition,
the IWG EDR/DSSAD deals with the definition of the technical requirements as a
prerequisite for the corresponding UN regulations for both EDR systems (convention-
al/autonomous) [90].
All crash data must be stored, available, and retrieved for crash reconstruction pur-
poses, even for testing, to understand the crash circumstances [91]. However, for AV
level 3 and above, where the system can perform all driving tasks for a specific time,
EDR is not helpful regarding responsibility and liability without the Data Storage Sys-
tem for Automated Driving (DSSAD) system to indicate who was in control during
the accident.
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3.2.3 DSSAD

Data Storage Systems for Automated Driving (DSSAD) is a storage device that deter-
mines whether the system or the driver has controlled the vehicle [84]. This provides
information regarding who controlled the driving task at a particular time to decide
the responsibility and, consequently, liability issues. Examples of stored data elements
include position and time-stamped switches of the ADS from one mode to another [83].
These may contain data about whether the system is activated, manually or automat-
ically deactivated. Therefore, it also records time and position and when the driver is
requested to drive; position and time-stamped override through brake control by the
driver; position and time-stamped transition demand by the ADS. Thus, the nature
of the reasons for a transition demand or deactivation can be determined, such as:

• Driver not available or lack of driver attention.
• Driver override.
• System failure.
• Unplanned event (ex: bad weather).

While EDR is event-based storage, DSSAD is the continuous storage of specific AD
data sets. All of these data must be clearly identified and recorded to eliminate
confusion or misinterpretation.

3.2.4 Limitations of Traffic Accident Data Records

Despite the important roles that these tools play in supporting investigations, they
have the following limitations:

1. Storage and Data Availability:
Due to storage limitations and the large number of continuously variable param-

eters required for analysis, EDR stores only specific data parameters for a short
time in specific events, such as events with airbag deployment. In addition, if these
tools do not have sufficient space to record an event, they will overwrite or erase
the previous event data.

2. Event Recognition Gaps: In particular, many accidents involving pedestrians and
cyclists are not recognised as significant events, with no airbag deployed, meaning
no event data is stored. Even when EDRs activate for crashes or near-crash events,
they may fail to capture events that could be considered criminal but are classified
as insignificant from a regulatory perspective.

3. Authorisation and Accessibility Issues: Ownership of EDR data is legally complex
and varies by jurisdiction. For example, in the USA, ownership of the EDR data
is a matter of State law, with some states considering the manufacturer to be the
owner of the data, rather than the vehicle owner. While courts can obtain EDR data
through court orders [91], NHTSA considers the vehicle’s owner to be the owner
of the data collected by EDR. However, the accessibility of this data introduces
further issues. In some cases, companies such as Tesla and BMW have recently
allowed the vehicle owner to access all EDR data using some unique hardware
and software. Until 2017, they were the only parties permitted to access the data
[81]. Furthermore, the original equipment manufacturer (OEM) may also access the
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EDR remotely in specific crash scenarios, raising concerns about who truly controls
the data.
These legal and accessibility challenges represent obstacles to access control.
Although stakeholders, such as manufacturers and vehicle owners, may require
access to the data, unrestricted access presents liability risks. The need for con-
trolled access becomes apparent, allowing stakeholders to access the data under
well-defined conditions and controls could be significantly valuable. In addition,
DSSAD systems require consumers’ approval for recording and/or accessing their
data [83], highlighting the need for a balanced approach to access control. Therefore,
legislators, regulators, and manufacturers play a pivotal role in determining what
data should be recorded, how the AI could select the valuable data, the expansion
of record device capacity, and, most crucially, who should be authorised to access it.

4. Insufficient Data for Forensic Analysis:
Current tools cannot collect all five data classes typically required for forensic

investigations: firmware, communication data, user data, safety-related data, and
security-related data [87].

A survey in which 173 international experts in accident analysis participated
depicted that a considerable number of traffic accidents involving ADAS cannot
be reconstructed [92]. Furthermore, the current EDR has to be refined to provide
sufficient data for liability purposes [93] as the current data available is insufficient
for thorough forensic analysis.

5. Privacy Concerns: Continuous recording and storage of video, location, speed,
and/or surroundings of a vehicle appear to contradict the regulations addressing
privacy protection. Therefore, laws related to this matter need to be enacted before
it is adopted.

6. Need for Standardisation: Although manufacturers continue to develop new gen-
erations of EDR and DSSAD, international standards are urgently needed to
ensure robust data validation and enhance their reliability. Global collaboration
is needed to establish regulatory frameworks, standardise data elements, ensure
interoperability, and define access authorisation.

3.2.5 Improving EDR and DSSAD for AV Systems

This section explores current efforts, recommendations and solutions for improving
EDR and DSSAD for AV Systems.

Recommendations/Current Efforts

To address the limitations surrounding EDRs and DSSAD, various international efforts
aim to improve current practices:

1. Time Window for Recording: The Aggregated Homologation proposal for Event
data recorder for Automated Driving (AHEAD), which is a working group focused
on developing standardized data models for recording information from a vehi-
cle’s Event Data Recorder (EDR) specifically designed for investigating accidents
involving automated driving vehicles AHEAD, recommends data recording from 30
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seconds before to 10 seconds after the collision. This time proves sufficient for the
individual EDR-relevant claims of the present claims collective.

2. Inclusion of Vulnerable Road Users: Given the frequent involvement of pedestrians
and cyclists in accidents, the Netherlands plans to immediately extend the scope
of the EDR to include them.

3. Incremental Adoption of Standards: The UK government proposes a two-step
method. First, introducing the USA’s standards for EDRs in a relatively short
timeframe; then, the second step applies more extensive requirements if adopting
a single-step approach is not feasible. [94].

4. Various studies in the literature highlight critical requirements for local data storage
in AV, such as those proposed by Kim et al. in their works [95, 96] and by Ten
Holter et al. in [97]. This research and similar efforts will ultimately enhance safety
and accountability in AV.

Technical Solutions:

This section presents various solutions for accident investigations and data integrity,
as summarised in Table 5 that compiles solutions from multiple studies.

Various safety analysis models, including CAST [56] and FRAM [98], are used for
accident investigation. CAST employs system theory to identify causes of failure and
propose preventive measures. FRAM assesses complex interactions in socio-technical
systems. These models lack a unified framework covering all causal factors, and manual
analysis remains costly and inefficient.

According to [92], the solution to the limited information gathered independently
from the manufacturer is a Forensic Event Data Recorder (FEDR). FEDR is an EDR
that meets all the requirements from the investigator’s perspective.

Data integrity preservation for investigation purposes in AV has been a goal of
several studies that have presented frameworks based on various forms of technology.
Hoque and Hasan have proposed a forensic investigation framework for AVs called
AVGuard tool [99] that is designed for integration with the AD system. The framework
assumes that the AV has local storage to store the log provenance while also commu-
nicating with a remote cloud server to publish the newly created log provenance. A
robot operating system (ROS) node collects all the logs from different AD modules.
Oham et al. have proposed a distributed digital forensics framework [100], which is
based on the evidence reported by nearby witness vehicles if a vehicle is involved in an
accident. Digital signatures, along with a corresponding certificate, are used to pro-
tect data integrity. Data exchanges between entities in the framework are stored in a
blockchain and used for later decision-making. Further, T-Box [101] is a trusted real-
time data recording system, which consists of an automotive data recording system
with a network monitor, generator, and recorder. It assumes that the gateway could
be used as a network monitor. The generator reconstructs data provided by the moni-
tor and delivers it to the recorder, which stores data. The recorder stores an individual
data entry into a block, and these data blocks can be stored locally or externally or
transmitted to a remote server. Buquerin et al. [102] have provided a general con-
cept for automotive forensics. Using Ethernet, their implementation uses the onboard
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diagnostics interface, the diagnostics over internet protocol, as well as the unified diag-
nostic services for communication. Liu et al. aim to store EDR data safely and away
from manipulation. In their scheme [103], data is not only sent to the manufacturer’s
server as usual, but the vehicle also uploads the EDR data to a cloud server and sends
the evidence of storage to the nearby vehicle through a vehicular ad hoc network.
To conclude, while various solutions have been proposed to enhance accident investi-
gations and ensure data integrity in AV systems, significant challenges remain. Issues
such as data ownership, and privacy concerns still need to be addressed to develop
a comprehensive and reliable approach for forensic investigations in AV environ-
ments. Future research should focus on integrating these solutions into a federated
framework that balances accessibility, security, authorisation, integrity and regulatory
compliance.

3.3 Local Data Processing

The collected data feeds the onboard diagnostics, which are part of the ADS function,
i.e. driving decision-making, analysis of crashes, or technical failures. In addition to
managing data collection from sensors and the fusion of sensor inputs, these embedded
systems handle high-precision functions such as localisation, storage and updating of
maps to finally perform complex tasks such as real-time control and machine learn-
ing. The data flow among these embedded systems faces many challenges, including
integrating data across disparate AV systems, efficient communication [106], safety,
and cybersecurity challenges [107]. These challenges require advanced solutions that
optimise data processing efficiency.

3.4 Edge Processing

There are three cloud processing approaches: centralised location, edge-based process-
ing, flexibility, and the Hybrid approach solution, which is the most preferred. Even
though clouds are crucial for the success of AVs, there are several challenges facing the
vehicular cloud community that are not faced by traditional cloud computing, such as
high data transfer demands, latency concerns, and security risks. These factors drive
the need for edge-based processing to offload computational tasks and reduce latency.

Key Challenges in Local and Edge Data Processing

Local and edge data processing plays a crucial role in ensuring low-latency real-time
decision-making, but it also presents various key challenges that must be addressed to
optimise data management, performance and reliability.

1. Latency-Sensitive Data Processing: While the low-rate data are regularly trans-
mitted to the manufacturer’s cloud, where all processing occurs at a centralised
location, the high-latency-sensitive data, however, needs high-speed data processing
within a distributed architecture.

2. Dynamic Resource Allocation: Unlike traditional cloud computing, vehicular clouds
face challenges due to the dynamic nature of resources.

3. Lack of Central Authority: Managing security, privacy, authorisation, and authen-
tication is more complex without a centralised authority [108], [109].
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Table 5 Solutions for Accident Investigations and Data Integrity

Category Solution Description Strengths Limitations

Safety Anal-
ysis Models

CAST [56]. Uses system theory to iden-
tify failure causes and pro-
pose preventive measures.

Identifies system fail-
ures systematically.

No unified frame-
work; costly and
inefficient.

FRAM [98]. Analyses complex interac-
tions in socio-technical sys-
tems.

Handles complex
interactions.

No unified frame-
work; costly and
inefficient.

Forensic
Investi-
gation
Frameworks

AVGuard
Tool [99].

Integrates with ADS, col-
lects logs via ROS and pub-
lishes to a cloud.

Supports modular
log collection.

Assumes reliable
local storage.

Distributed
Digital
Forensics
Framework[100].

Relies on nearby AVs and
Blockchain to ensure data
integrity.

Uses Blockchain for
tamper-proof evi-
dence.

Requires witness
AVs; may add net-
work overhead.

Automated
Vehicle Data
Pipeline.
[104].

A pipeline consists of col-
lecting raw sensor data and
processing to reconstruct
crash scenarios.

High-fidelity crash
reconstruction.

Privacy and Security
concerns.

Trusted
Data
Recording

T-Box [101]. Real-time data recording
system with network moni-
toring and storage options.

Reliable real-time
operation.

Lacks privacy consid-
erations.

Generalized
Automotive
Forensics
[102].

Uses diagnostics and
Ethernet-based communica-
tion.

Efficient diagnostic
communication.

Limited implementa-
tion details.

Forensic
Data
Integrity

Safe EDR
Storage [103].

Uploads EDR data to the
cloud and shares evidence
with nearby vehicles.

Prevents data manip-
ulation.

Relies on vehicular
ad hoc networks.

Forensic
Data
Integrity
with Con-
trolled
Access

AVChain
[105].

Blockchain and IPFS for
secure, verifiable crash data
sharing among stakeholders.

Ensures data
integrity and con-
trolled access.

The architecture’s
complexity and
limited real-time
capabilities

Forensic
Event Data
Recorder
(FEDR) [92].

Meets investigator require-
ments by gathering indepen-
dent data.

Enhances forensic
investigation.

Requires widespread
implementation.

4. Network Bandwidth and Scalability: Large amounts of data require significant
network bandwidth and scalable infrastructure for local processing[110].

Solutions for Local and Edge Data Processing

The edge-based cloud data centre performs many tasks at the edge instead of the
cloud, leading to faster access than cloud computing. Edge and fog computing play a
critical role here because the data requires high network bandwidth, which provides
data processing and local storage capabilities. In addition, combining centralised cloud
computing with edge-based solutions balances latency-sensitive and non-sensitive
tasks.
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An achievable paradigm for addressing issues with dynamic resource allocation
and latency-sensitive data processing is mobile edge computing (MEC). MEC reduces
reliance on centralised cloud infrastructures by bringing computational power closer
to the data source, allowing quicker and more effective processing. This method works
particularly effectively for ADS that must handle data securely and make decisions in
real time. As summarised in Table 6, various studies propose solutions that optimise
computation time, energy consumption, and resource usage while maximising privacy
in edge environments.

Table 6 Mobile Edge Computing (MEC) Solution Studies – Summary of Objectives

Scheme Minimising Minimising Optimising Maximising

computation time energy consumption resource privacy

[111] ✓ ✓ ✓ ✗

[112] ✓ ✗ ✓ ✗

[113] ✓ ✗ ✓ ✗

[114] ✓ ✗ ✗ ✗

[115] ✓ ✗ ✗ ✗

[116] ✗ ✗ ✗ ✓
[117] ✗ ✓ ✗ ✗

[118] ✓ ✗ ✗ ✓
[119] ✓ ✗ ✓ ✗

3.5 Backend Cloud Computing

Most companies acknowledge and state that they keep a lot of data regarding the
vehicle owner, the vehicle itself, and its in-vehicle hardware and software products
[81]. The period of retention of this data varies from one company to another. They
also differ in how they obtain this data; some transfer it physically to backend servers,
while others do so remotely via networks. In addition, they differ in the data format;
companies such as Tesla use raw sensor data, whereas some other companies ask Orig-
inal Design Manufacturers (ODM) to provide processed data.
Captured and stored data requires substantial storage infrastructure, for instance,
cloud or on-premises servers. The majority of automakers are utilising cloud-
based capabilities via connected-car services. For example, in 2019, Ford publicised
its connected-vehicle collaboration with AWS. In addition, Toyota introduced its
engineering ecosystem in 2020 to develop and deploy the next generation of cloud-
connected vehicles alongside similar initiatives outlined in [120].
Indeed, in a promising attempt to address the data management challenges in AVs,
Cloud technology is a scalable solution in the automotive industry. Therefore, data is
classified as onboard data, sent to the cloud or stored in servers and hard drives as
long-term storage. Local function data and V2X data that has a 4ms response time
requirement and has to go off-vehicle will not be sent to the cloud [121]. In contrast,
model training data, for example, includes cases where a new object has been detected,
and the data about this anomaly will be used to formulate patterns and reports will
be sent to the cloud for future algorithm improvements [122], [123].
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3.5.1 Key Challenges and Current Solutions

The following key challenges in backend cloud computing for AVs appear insufficiently
addressed in the literature.

1. The Need for Data Sharing

Even though some vehicle manufacturers agree to share in-vehicle data with the other
service providers by accessing data directly through the vehicle manufacturer’s server
or via “neutral” servers that would gather the data, the service providers ask for
direct real-time access to in-vehicle-produced data and functions through an in-vehicle
interoperable, standardised, secure, and open-access platform [124]. In addition to legal
authorities, Tesla states that the data could be shared with their service providers,
business partners, and affiliates; in addition to any third parties, the owner has also
been authorised [81]. Some stakeholders suggest that car manufacturers should allow
tier 1 suppliers to access the data directly [125] to maintain and improve their products.
Figure 7 illustrates the tier levels within a manufacturer.

Tier 3 Suppplier: Supplu parts that are requiered for components.

Tier 2 Supplier: Supply component.

Tier 1 Supplier: Produce 
compete component.

OEM

Fig. 7 Hierarchy of supplier tiers in automotive manufacturing.

Various situations are defined in the literature where stakeholders need to access
accurate AV data, such as accident and failure data. In traditional vehicles, human
error is the critical cause of 94% of vehicle accidents [126]. However, in the case
of an accident with an AV, there are clear differences in liability. In particular, the
interaction of many factors in AVs and their ability to make some or all driving
decisions disrupts the adjudication process. The liability subjects of AV accidents may
include vehicles, vehicle assistant drivers, manufacturers, vehicle owners, and insurance
companies [127]. However, the need for this data from stakeholders encompasses a
much broader scope than these parties. In the literature, authors and organisations
differed in their identification of those stakeholders and the techniques they use to
identify them. NHTSA states that motor vehicle accidents may be investigated through
various entities, and they listed them [82]. Another example, the authors in [14]
fragmented stakeholders into three general classes: A) containing all types of end-
users and society; B) containing all technical groups; and C) for all regulatory parties,
including insurers. However, the most frequent entities in literature are as follows:
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1. Government and the legal authority: The accident data collected from the involved
AV are necessary as facts and evidence in criminal courts to determine liability.
Another possible scenario for government use is to take advantage of data to reduce
the possibility of accidents in the future and thus reduce losses and assess roadside
safety.

2. Original Equipment Manufacturer (OEM): The Manufacturers may analyse the
collected data and use it to monitor system performance and improve their prod-
ucts. Another possible scenario is to reconstruct the accident to assess the causes
in order to reduce the possibility of accidents in the future.

3. Suppliers: The potential scenario is to analyse and improve the products or services
that are involved in a vehicle manufactured by the OEM.

4. The owner: In one possible scenario, the owner might use the data as evidence to
absolve him/her of any criminal liability. In addition, the provided data could be
used for insurance amounts and services.

5. Insurance: The stored data presents accurate evidence to resolve insurance disputes
and a fair solution that ensures that no party is tampered with.

6. Testing and certification bodies: The testing organisation needs the data to
reconstruct the accident in order to analyse and update the technical and legal
requirements.

7. Road authorities: Data can support assessing and improving the infrastructure and
roadside safety.

8. Researchers: To analyse and assess the AV crashes to assist in the development of
vehicles, infrastructure, and the whole environment’s components.

In addition, based on this study’s findings, a further entity has been identified:
9. Other Manufacturers: This category includes companies involved in manufacturing

the vehicles. These manufacturers can leverage the collected data to improve their
products, assess compatibility with AV technologies, and enhance training for AVs,
especially when they encounter new cities or environments they have never expe-
rienced before. This strengthens the AV’s adaptability and operational efficiency,
contributing to the development of safer and more effective ADS.

Due to the significance of preserving the data generated and received by the system,
it is clear that sharing this data with all relevant parties is essential.

Current Solutions

One approach that facilitates collaborative data sharing and mitigates privacy con-
cerns is using Federated Learning (FL), which is a distributed collaborative AI
approach that allows multiple devices to coordinate data training with a central server
without sharing actual datasets [128]. With a trusted server (aggregator), parties can
learn a shared machine learning model locally and separately, as well as share only
the resulting insights from each analysis. This technology is an active area adopted
recently in various applications and research such as in financial applications [129],
mobile applications [130], biomedical research [131], which relies on Multiparty Homo-
morphic Encryption (MHE) to perform privacy-preserving FL by using the advantages
of both interactive protocols and homomorphic encryption (HE). Another example is
to encrypt only the critical parts of model parameters to reduce local computation
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and communication costs. Sotthiwat et al. [132] proposed a partially encrypted Multi-
Party Computation (MPC) solution that only encrypts the first layer of local models
with MPC strategy.

In the AV domain, blockchain-based FL systems have been recently introduced
to enhance security, transparency, and reliability in data sharing. For example, a
distributed on-vehicle machine learning model [133] has been proposed to improve
vehicular networks. Despite the increased computational overhead in that work, data
could be trained, and models could be exchanged in a distributed manner. Similarly,
a framework has been presented to enable vehicles to encrypt portions of their data
using HE before uploading it to a cloud server[134]. Zeng et al [135] also designed an
automated controller to avoid performance deficiencies of traditional learning-based
controllers that are trained by each connected vehicle’s local data. In their design, the
learning models used by the controllers are collaboratively trained among a group of
CAVs.
While these approaches and similar ones demonstrate potential solutions, they require
further refinement to enable AV manufacturers to collaboratively benefit from FL
algorithms by sharing knowledge across their respective clouds without exchanging
any raw data. Moreover, they could be effectively integrated to facilitate collective
training that would otherwise be unattainable individually.

On the other hand, while these algorithms preserve privacy, this advantage comes
at the expense of the model’s accuracy due to encryption and the limited operation
set they support. In other words, approaches such as FL, HE, and MPC offer sig-
nificant advantages in preserving data privacy and security, and play a crucial role
in facilitating secure data analysis. However, in certain use cases, sharing partial or
complete datasets is a desirable goal to enhance model accuracy and performance,
allowing for more comprehensive insights and better decision-making while protecting
sensitive information.

ADS in AV as an emerging and future-oriented field requires broader and more
effective collaboration and data sharing among the stakeholders mentioned in the
previous section. Thus, there is an urgent need for systems that integrate highly secure
data sharing for AV. The literature presents several attempts to propose secure access
control mechanisms in various data fields, such as [136], [137], [138]. Even though
there are a few notable systems that have been developed and tailored to AV data
[105, 139], similar works in this field are rare and nearly nonexistent.

2. Data Validation

The challenges of data sharing are not limited to direct access; rather, there is also
a need to validate data. However, due to the large volume of heterogeneous data, it
is quite difficult to even pre-process it effectively. Therefore, data validation becomes
a critical step in this stage of the data lifecycle to ensure consistency, accuracy, and
reliability.

Current Solutions

A blockchain-based platform with MPC is proposed for the AV data validation process
[140]. BELIEVE, which stands for Blockchain-Enabled Location Identification and
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Efficient Validation with Encryption approach, integrates real-time data sharing for
immediate decision-making with backend storage on a distributed ledger to ensure that
validated data is securely recorded and accessible for future reference. AV systems rely
heavily on big data analytics, thus, data quality improvement strategies are critical
to address challenges relevant to a big data environment, such as the management,
storage, cleaning, integration, and reducing inconsistencies and optimisation. Data
quality improvement studies have been proposed recently, such as [141–143]. These
studies and further programmes are needed as essential parts of validating data quality
before and after it is stored.

4 Cross-Cutting Concerns

The ADS operate in a complex and dynamic environment, generating vast amounts
of data that must be processed, stored, and shared seamlessly. This section explores
certain overarching concerns that impact the system as a whole. Addressing these
concerns is critical to ensure reliability, trustworthiness, and ethical operation.

4.1 The Complexity of Fault Detection

An ADS generates a vast amount of data, making the extraction of crucial information
from the logs of different AD modules a real challenge. In the case of a defect, finding
the set of influencing factors causing the failure is a complex mission due to two rea-
sons: first, the AD functions may not be sufficient for all unexpected conditions in the
dynamic environment with unlimited contexts; second, deviation from the intended
functionality due to the inductive nature of a system that combines machine learn-
ing components. Failure in sensor fusion, sensor readings (e.g. misdetection), external
environment context (e.g.: weather), or control issues (for example: braking is not ini-
tiated in time), can result in unintended outcomes, sometimes due to combinations of
these factors [144, 145]. Another proposed taxonomy by Zhao et al. [146] for potential
sources of sensor data anomalies in AV is categorised into four main categories: faults
in components, adaptability failures, cyber-attacks, and design deficiencies. Within the
enormous amount of produced data, locating meaningful data that pinpoints the crash
cause or causes is a significant challenge. Identifying the precise moment of failure, or
the faulty device or subsystem, adds further complexity. In discussing the complex-
ity of fault detection, various external factors contribute to scenarios that may lead
to dangerous situations. Identifying these causes of harm complicates fault detection
because it requires a broader understanding of the traffic context, not just the internal
functioning of the vehicle.

Figure ?? illustrates the complexity of sources of harm in the ADS based on ISO
26262, ISO/PAS 21448, and SAE J3016 standards. It categorises harm arising from
malfunctioning behaviours, functional insufficiencies, and deviations from the Opera-
tional Design Domain (ODD), the specific conditions where the ADS is designed to
operate safely. In addition, it highlights that even with proper design intent, failures
can occur, and the operational context influences these sources of harm. Furthermore,
since crashes are rare events, testing and analysing similar scenarios to define the exact
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harm that may be blamed on one party or another in this nested system is particularly
challenging.
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Fig. 8 The Complexity of Finding The Source of Harm[144].

For real-time safety assessment, [147] has proposed the Bayesian Hierarchical
Spatial Random Parameter Extreme Value Model (BHSRP) for real-time safety assess-
ment. This model could address the difficulty of extracting meaningful information
from the massive and complex datasets generated by ADS.

In this context, a conceptual fault-handling system design for driverless trucks was
proposed in [148], which highlights the need for advanced fault detection mechanisms
in driverless vehicles. The findings in the paper emphasise the difficulty in determining
the exact cause of a failure. Similarly, Koopman and Wagner [149] discuss the main
challenge in testing AV, framing their analysis within the V-model developed under
ISO 26262. This framework links various types of testing to ensure that safety-critical
systems meet required standards. However, ISO 26262:2011, which sets standards for
safety-critical systems, requires adaptation to accommodate the complexities of future
autonomous driving technologies [150]. In the same context, A criticality analysis
framework [145] aimed to identify and analyse critical traffic phenomena for the ver-
ification and validation of automated vehicles. The proposed mechanism involves a
combination of both expert-based and data-driven approaches to identify relevant crit-
icality phenomena and explain the underlying causes. These studies and similar ones
lack a comprehensive approach to identifying influencing factors in such a complex
and dynamic traffic environment. They also, as mentioned earlier, face limitations in
model constraints and data availability when assessing critical situations.

32



Maintaining the high-quality training data sets is crucial for AI systems that sup-
port decision-making in AV [151]. Predictive models that leverage machine learning
approaches can further enhance data validation by classifying useful and non-useful
data, thereby improving real-time analytics. For example, the machine learning-based
approach for predictive analytics, as in [152], offers possible solutions for identifying
system failures, optimising data validation and addressing sensor misdetection and
control failures in such dynamic environments. Further research is needed to address
the challenges of identifying the source of harm and fault in AV due to the complexity
of their systems and operating environments.

4.2 Data Privacy

The open wireless access in VANET seriously impacts not only the privacy of users,
but also the pedestrians whose photos and locations can be captured by vehicles.
AVs generate a vast amount of data that is collected, stored, transferred, and shared,
posing severe risks to user privacy.

Privacy concerns span all phases of data flow in AVs and require thorough inves-
tigation. Table 7 summarises key studies addressing these challenges, detailing their
aims, mechanisms, results, and limitations in providing privacy solutions for AV.

4.3 Security

Security in AV is a critical concern as network vulnerabilities can lead to severe
consequences, including loss of life. Due to the complexity of AV systems, security
threats target various components, and these attacks can be broadly classified into
the following categories:

In-vehicle network

Attacks on In-vehicle networks include the following:

1. ECU engine control units: Attackers may compromise the ECU by altering
programming code, affecting vehicle performance.

2. CAN and SEA J1939 buses: The CAN bus, which connects all the vehicle’s
components, is a critical target for attacks. For example, malicious actors can inject
viruses into the CAN bus, disrupting critical operations

3. Remote sensors:Any tampering with the sensors’ data generated and transmitted
can result in fatal accidents. Through existing wireless networks, external entities
can make connections with sensors, implementing remote sensor control.

4. GPS: Adversaries can alter GPS data, disrupting navigation and decision-making
processes.

5. Wireless communication: Wireless technologies such as Bluetooth, tire pressure
monitoring systems (TPMS), and keyless entry and ignition systems present addi-
tional vulnerabilities. Attackers may exploit these systems to gain unauthorised
access or control over the vehicle [65].

33



Table 7 Summary of Privacy Concerns and Solutions for Autonomous Vehicles in the Literature

Paper Aim Mechanism Results Limitations
[153] To preserve privacy in

AV using homomor-
phic encryption dur-
ing the storage and
processing stages.

A Pixel-level encryp-
tion for secure search-
ing over encrypted
images with proba-
bilistic trapdoors.

Reduces storage and
increases efficiency.

Lacks detailed dis-
cussion on real-world
implementation and
performance impacts
on various cloud envi-
ronments.

[154] To develop a
privacy-preserving
authentication
scheme for V2G net-
works.

The scheme uses
randomly selected
pseudonyms for AVs
and establishes a
secure session key
through an authenti-
cation key agreement
protocol to ensure
confidentiality.

The proposed scheme
achieves lower com-
munication overhead
(800 bits) compared
to existing schemes.

The paper does not
provide real-world
testing of the pro-
posed scheme.

[155] Enhance privacy in
federated learning for
AVs

Gradient encryption
in federated learning
to preserve user pri-
vacy without extra
computational cost.

Improved accuracy
(2% higher) and
reduced data transfer
compared to conven-
tional FL.

Additional computa-
tional infrastructure
needed for blockchain
integration.

[156] Propose a
context-aware
privacy-preserving
method for AVs.

Uses SDN and
differential priva-
cy/data aggregation
depending on data
sensitivity.

Shows higher per-
formance in privacy
preservation, cost,
and latency com-
pared to existing
methods.

May require fur-
ther evaluation
with third-party
providers; potential
limitations in highly
dynamic environ-
ments; computational
complexity and over-
head considerations.

[157] Develop a framework
that allows users to
choose which parts of
their data they want
to keep private before
sharing it with other
vehicles.

PRECISE framework
utilises secure seg-
mentation to iden-
tify sensitive objects,
inpainting techniques
to remove them, and
edge computing to
process data using
secure deep learning
models enhanced by
additive secret shar-
ing.

The framework
achieved secure seg-
mentation in 3.47
seconds and inpaint-
ing in 0.99 seconds.

Processing times
may impact real-time
performance, and
the security of edge
servers poses a risk of
data exposure.

[158] To improve traffic
efficiency and fuel
economy while pro-
tecting the privacy
of vehicle data using
cloud-based collabo-
ration.

an affine masking-
based privacy
strategy, which
encrypts vehicle state
data before sending
it to the cloud and
decrypts the control
input using inverse
affine masking to pro-
tect privacy during
vehicle-cloud collabo-
ration.

The scheme enhances
traffic efficiency and
fuel economy while
securely masking
vehicle data through
an affine masking
technique

The limitations
include poten-
tial computational
overhead affecting
real-time perfor-
mance and scalability
challenges when han-
dling a large number
of vehicles simultane-
ously.

6. Denial-of-Service (DDoS): Distributed Denial-of-Service (DDoS) attacks have
emerged as a critical concern within the V2X and VANET environments. These
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attacks flood vehicle communication channels with malicious traffic, leading to
service disruptions, degraded safety performance, or even system failure.

Vehicle to everything network (V2X)

Attacks on V2X communications typically target the following systems:

1. VALNET or Vehicle ad-hoc networks: VANETs rely on dedicated short-range
communications (DSRC) and are based on the IEEE 802.11p standard for wireless
access in vehicular environments.

2. Mobile Cellular Network, Satellite Radio, and Bluetooth: Another com-
munication structure required for V2X are the mobile cellular network, satellite
radio, and Bluetooth, which can be targeted by attackers to disrupt vehicle
communication or gain unauthorised access to vehicle systems.

Another taxonomy of attacks has been provided by Gupta et al. [159] based on the
architecture of hardware, network, and software as in Figure 9.

Several solutions in the vehicular network have been recently proposed. For
instance, RTED-SD, which is a scheme that aims to detect real-time attacks [160]. In
this scheme, the authors use the Fast Quartile Deviation Check algorithm (FQDC)
to recognise and locate the attack in the Internet of Vehicles. Similarly, a threat pre-
vention framework has been proposed in [161] for Vehicle-to-Vehicle communication
in AV Networks, integrating dynamic risk assessment using the Probability-Impact-
Exposure-Recovery (PIER) metrics, security decay assessment via ruin theory, and a
risk-aware message forwarding algorithm based on game theory. This approach aims
to enhance security and privacy by proactively addressing vulnerabilities in V2V com-
munication. Furthermore, to detect malware attacks in AV, Aurangzeb et al. [162]
proposed a hybrid approach that combines static and dynamic analysis for real-time
detection. The mechanism demonstrated malware detection that also enhanced safety
and reduced communication latency. Additionally, a method proposed by Cretu et al.
[163] is a method that utilises evolutionary search and machine learning to identify
vulnerabilities in query-based systems (QBS). It showed higher performance in finding
vulnerabilities compared to existing attacks.

Various works have explored and enhanced Intrusion Detection Systems (IDS) in
AV, aiming to address different challenges and approaches. Anthony et al. [164] propose
a method called NTB-MTH-IDS, a Non-Tree-Based Multi-Threshold Hybrid Intrusion
Detection System, which is an intrusion detection system that leverages non-tree-
based machine learning techniques. Similarly, Anbalagan et al. [165] introduce IIDS,
which is based on a deep Convolutional Neural Network (CNN) system that transforms
vehicular network traffic data into images for attack detection. Additionally, Aloraini
et al. [166] investigate adversarial attacks on IDSs in in-vehicle networks. For detecting
DDoS attacks in VANET, recent studies have investigated the machine learning-based
techniques, for example, the approach presented by Setia et al. [167].

Another security approach for AV that has emerged as a promising solution
is quantum encryption, which aims to face the potential threats posed by quan-
tum computing. Despite the complexity of quantum-based security solutions, several
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works have explored their application in AV. For instance, including blockchain-based
authentication, quantum key distribution, and secure federated learning [168–170].
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Fig. 9 Attack Taxonomy [159].

Various methods recently have proposed the integration of BC technology in IoV
systems, aiming to enhance security. For example, [171] uses a consensus mechanism to
provide a secure event-sharing protocol for smart cities using IoV and RSU. Similarly,
[172] aims to protect IoV against quantum attacks. In addition, a blockchain-based
mechanism [173] is designed to provide security-related data collection and incentivise
mobile nodes.

Despite the advancements of these solutions, they still face notable limita-
tions. In addition to their computational overhead and integration complexity, many
approaches rely on predefined threat models, limiting their ability to detect unknown
attacks. An overview of the key security solutions proposed for autonomous vehicles,
including their applications, approaches, and limitations, is presented in Table 8. A
thorough understanding of both vulnerabilities and potential solutions is essential to
advance the security and privacy of AV in a connected landscape.

4.4 Regulation and Standards

Most of the current regulations that relate to human drivers must be changed to prop-
erly address AV, including testing and deployment, safety standards, data exchange
standards, security standards, liabilities, insurance, and personal information privacy
standards. For example, much of the current privacy legislation is inappropriate for
AVs, such as the U.S federal Drivers’ Privacy Protection Act, and Electronic Commu-
nications Privacy Act [94].
Indeed, some countries have started acting on new regulations; for instance, the Scot-
tish Law Commission’s regulation for AV and AV legislation and policies in the USA,
the Netherlands, the UK, and Sweden [14],[174]. In addition, EU countries, industry,
and the Commission are collaborating to achieve the EU’s ambitious vision for con-
nected and automated mobility across the EU. The commission will address many
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Table 8 Summary of Security Solutions for Autonomous Vehicles in the Literature

Security Solution Application Area Mechanism Results / Contri-
bution

Known Limita-
tions

RTED-SD (Real-
Time Event
Detection-Stop
Detection)

Road event detection,
Driver behaviour
analysis

Hypergraph-based
technique for
analysing multi-
vehicle interactions
to detect risky events
in real time

Enables fast detec-
tion of hazardous
driving scenarios

High computational
cost due to complex
multi-vehicle data

Hybrid Malware
Detection

Malware detection in
V2X communications

Combining static and
dynamic malware
analysis in real-time
systems

Enhancing malware
detection while main-
taining safety and
reducing communica-
tion latency

Processing overhead
and real-time com-
plexity

Intrusion Detection
Systems (IDS)

Detection of DDoS,
adversarial, and
spoofing attacks in
vehicular networks

ML-based IDS (e.g.,
NTB-MTH-IDS),
CNN-based traffic
analysis, GAN-based
adversarial attack
detection

Improves detection of
varied cyber threats
using adaptive learn-
ing

High dependence on
training data; costly
model updates; com-
putational intensity

Quantum Encryption Secure commu-
nication and
confidentiality

Uses quantum key
distribution and fed-
erated learning for
AV communications

Offers future-proof
security resistant to
quantum threats

High implementation
complexity and cost
of quantum hardware

Blockchain-based
Authentication

Data integrity, pri-
vacy, and access con-
trol in V2X

Uses smart contracts
and distributed
ledgers for secure
authorisation and
tamper-proof logging

Enhances trust and
transparency in AV
systems

Scalability issues and
computational over-
head in high-speed
networks

Blockchain-based
Incentive Mechanism

Secure data sharing
and collaboration in
IoV environments

Incentivises honest
behaviour in AV
networks through
token-based mecha-
nisms linked to data
integrity

Encourages coopera-
tion while ensuring
verifiability of shared
data

Assumes predefined
threat models; inte-
gration complexity

current issues, such as policies and legislation relating to digital technology, includ-
ing cybersecurity, liability, data use, privacy, and radio spectrum/connectivity, which
are of increasing relevance to the transport sector [175]. This supports the aforemen-
tioned 5G PPP; however, there are no international central regulatory bodies existing
to regulate the implementation and deployment of AV. In light of these regulatory
challenges, various global principles can offer valuable insights into shaping the future
of AV regulation, such as the Precautionary Principle (PP), the Principle of Preven-
tive Action, and the Best Available Techniques (BAT) Principle. There is a growing
need for greater academic investigation into the best legal and regulatory practices for
ADS.

Recent studies [176–178] have suggested frameworks and approaches to guide the
development and regulation of AVs and their related technologies. Similar and further
efforts are needed to help balance the benefits and risks of AV by incorporating safety
and ethical considerations into policies and standards.

4.4.1 Cross-Border Interoperability

Accessing diverse services and sharing data among vehicles and infrastructure is a
critical component of vehicle decision-making. However, interconnectivity and inter-
operability remain significant challenges in our geopolitically partitioned World.
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Cooperative Intelligent Transportation Systems (C-ITS), a paradigm that is based
on Information and Communication Technologies (ICT), enables the creation of both
stand-alone in-vehicle systems and cooperative systems (V2X) [179]. While C-ITS
solutions provide valuable services, the deployment of their infrastructure and delivery
of their services often encounter territorial and regulatory hurdles [180]. An archi-
tecture has been presented in [181] that addresses these challenges by focusing on
the integration of cooperative intelligent transportation systems in automated driv-
ing with an emphasis on cross-border interoperability. This AUTOCITS architecture
was implemented in three European cities, showing the potential for harmonized sys-
tems across national boundaries. Achieving seamless cross-border interoperability in
the ADS of AV requires significant collaboration among stakeholders, including gov-
ernments, industry, and international standardization bodies. Bridging regulatory and
technical gaps across regions remains essential for realising the full potential of C-ITS
and AV ecosystems.

5 Conclusion and Future work

This paper highlights the essential role of data authorisation and validation in
Autonomous Vehicle ecosystems, reviewing recent advances at each stage of the data
lifecycle. As AV technology evolves, traditional data frameworks must adapt, with
technologies like blockchain, zero-knowledge proofs, and federated learning playing
increasingly vital roles. Global regulatory collaboration and integrated systems are
also essential to ensure the safety, privacy, and security of AVs and their connected
infrastructure. The key findings and insights of this review are as follows:

1. Data Flow, Integrity, and Accessibility: Secure data management is fundamental
for ADS. The flow of data, from acquisition and processing to sharing and storage,
must be protected from unauthorised access and manipulation to ensure system
reliability and safety. The integrity of this data is critical, not only for real-time
decision-making but also for accident reconstruction, forensic investigation, liability,
production development, research, regulatory, and for all parties involved in this
operation cycle. Modern technologies such as Blockchain can provide immutable
records for data validation, ensure traceability in data exchanges, and enhance
transparency in AV systems at each stage. However, in most frameworks, it does
not inherently provide access control or authorisation, which must be handled by
other mechanisms.

2. Data Ownership, Ethical Considerations, and Authorisation: The data ownership in
AVs is complex, with multiple stakeholders, including manufacturers, governments,
and users, each having a vested interest in the data generated by these systems. This
complexity presents obstacles in sharing solutions due to ethical considerations and
conflicting interests. Therefore, any data authorisation process must ensure that
only authorised entities can access or modify critical vehicle data to strike a bal-
ance between innovation and privacy concerns. Multi-factor authentication (MFA)
strengthens identity verification, zero-knowledge proofs (ZKPs) allow verification
without exposing data, secure multi-party computation (SMPC) enables computa-
tions on encrypted data, and federated learning supports decentralised data training
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without direct sharing. Combining these approaches can enhance access control
while preserving privacy. C

3. Regulatory Challenges and Cross-Border Interoperability: Existing regulatory
frameworks are primarily designed with human drivers in mind and still do not
fully adequately address the unique challenges posed by AVs, particularly in terms
of data privacy, cybersecurity, liability and data ownership. With AV technology
rapidly evolving, new regulations must be enacted to address these issues effectively.
There is also an urgent need for international collaboration to establish standards
that maintain and ensure data security and privacy in different regions.

4. Safety and Security Risks: AV systems face growing cybersecurity threats, requiring
a multi-layered defence. Approaches such as Intrusion Detection Systems (IDS) and
anomaly detection use AI-driven techniques to identify real-time cyber threats. In
addition, Quantum-safe cryptography is crucial for protecting AV systems against
future quantum computing attacks. Furthermore, there is an urgent need for threat
prevention frameworks that incorporate risk assessment models and game theory
to help proactively further mitigate potential cyber risks. By integrating these
technologies, AV systems can strengthen security measures while ensuring safe and
efficient driving operations.

Future work should focus on collaborative efforts among industry stakeholders,
regulators, and researchers to build scalable, compliant, and secure data authorisation
and validation frameworks for AVs.
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