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Abstract

This work highlights the significant aspects of developing a digital twin (DT) for photovoltaic (PV) systems, with a focus on
digital models that enable the safe and efficient use of autonomous platforms. Autonomous systems in this context refer to
unmanned air systems (UAS) and ground robots. The integration of autonomous systems introduces the need for a different
approach to modeling principles to enhance navigation coordination and real-time image transfer. As part of ongoing research,
this study investigates aspects of 3D modeling and database implementation. We present findings from the terrestrial laser
scanner (TLS), structure-from-motion (SfM) 3D models, and interaction with the database structure for an experimental PV
farm. As part of the project outcomes, we clarify the distinguishing factors between a digital twin for PV systems and advanced
robotics systems. The potentials, research gaps, and critical lessons learned are also highlighted for in-depth understanding. This
report aims to provide foundational documentation for future research or industrial implementation with a similar focus. It is
envisaged that current and future solar photovoltaics research in this area will build on these insights, highlighting the realities
and benefits of DT technology while enhancing in-depth penetration, management, and control of renewable energy systems.

1 Introduction integrate UAVs and UGVs for installed PV systems

An increase in complexity, number of modular installations,
and size of energy systems, coupled with unique demand
profiles, has resulted in an unprecedented need for more
advanced digitalization platforms [1], [2], [3]. The digital
twins' concept describes an advanced digitalization mode,
where virtual replicas of physical energy systems are created
to enhance bidirectional control and real-time monitoring,
optimization, and predictive maintenance [4], [5] DTs are
configured to integrate real-time data from sensors, keep
historical records, and process the data using various machine
learning (ML) or artificial intelligence (AI) algorithms to
produce dynamic models that replicate the structure and
characteristics of their physical counterparts or physical twin
(PT) [6]. DTs can be implemented for individual components,
sub-systems [7], or whole systems [8], making it possible to
develop highly scalable energy systems as they become
increasingly complex and interconnected. This offers
unprecedented opportunities for improving the efficiency,
reliability, and sustainability of very large energy systems
such as local microgrids or utility scales. Note that the
complexity of a DT itself is dependent on the use
necessitating its development.

DTs have been implemented mostly using simulations for
several energy systems, such as wind [9], bioenergy [10],
micro-grid [11], and PV systems [12]. This work focuses on
the development of DTs for PV systems based on the need to

maintenance. We focus on the use of 3D models and data
storage to enable real-time interaction and control of the
UAV/UGYV, providing valuable insights into the challenges
and potential for future development.

2 DT for PV Systems

2.1 Conventional Approach

Several references indicate the implementation of DT for PV
systems. While most of them are at the component or sub-
module level [13], [14]; others do not reflect the true nature
of a DT, which is bi-directional and real-time interaction and
control [15], [16]. DTs can largely be classified into model-
driven (MD-DT), data-driven (DD-DT), or hybrid models
(H-DT) [6] depending on the purpose of the DT. Model-
driven DTs rely on mathematical or physical models of the
physical twin to determine a relevant output, while data-
driven DTs are reliant on historical or real-time data, which
are processed and applied for feedback. Hybrid models
combine both for a more detailed evaluation. System
integration in model-driven DTs can sometimes be extended
to the use of computer-aided-design (CAD) models for
immersive and real-time applications. This creates a
wholesome and rigorous process that ensures verifiable and
trustworthy systems. This work aims to implement a hybrid-
model DT using CAD models to ensure safe autonomy in
large systems maintenance and monitoring.



Physical Components Digital Models

/ A\
i . A
£ Environmental Sensors (ES) | . Mathematical ||
= | . o ! Graphic models =
=, Solar Panel (SP) | | models log
o " 1 Q -
51 DC Dev rees ‘*Mndellmgal D-ES &
= AC Devices | | =3
Zl Melers D-SP z
= elers | | y (=N
=N Dataloggers | D-DC =
atalogg . e
T A o bac
Jr Cloud l
T \ \A e T T T T T \
! | ! Gather data e
| o5 | =
E ‘ Controller ‘ r;’m:t_'ﬁ | ;
= Take Action | rec IC_[, B
3 I Make decision =
= | ' I'Z.
. / ' 1@

—_—— e — — — = . e e —

Fig. 1: Simplified overview of conventional PV DT

PV systems have been conventionally monitored using
different digitized platforms that do not have to utilize real-
time data, such as those described in [17], [18]. The platforms
are also not capable of implementing real-time control, thus
limiting the system's reliability and ease of management. [19]
implemented advanced monitoring DT with real-time
bidirectional data flow and system control. In Fig. 1, we
present a simplified overview of the PV DT showing the
interaction between the PT and DT. Note that for the
conventional PV-DT, the models are often mathematical
models only or implemented in parallel with 2D graphic
models. This is simply because there is no need to use a 3D
model except for aesthetic purposes. However, with the
increasing need to alleviate the rigor associated with PV plant
maintenance and the existence of autonomous platforms
capable of remote maintenance activities, there is a new gap
for developing models that simplify such activities while
ensuring the safety of assets and involved humans.

2.2 PV-DT models

Autonomous platforms drastically reduce inspection time and
enable frequent monitoring activities for remote and large-
scale systems. However, there exists limited literature
detailing the physical implementation of a DT for solar PV,
and not only simulation, such as in [20]. Determining a
suitable model in this use case depends on a variety of
parameters, and core to this is the need to safely navigate the
platforms around the PV infrastructure, little animals that
roam the site, and humans involved in the overall monitoring
and maintenance procedures.

In Fig. 2a, we highlight different functions and perspectives

of a PV-DT model, while the DT layer-level architecture and
model integration are depicted in Fig.2b.
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Fig. 2 PV-DT (a) Model layer taxonomy, (b) Model-layer
integration.

As shown in PV-DT taxonomy of Fig. 2a, the digital model
layer can be developed based on the various context and use
envisaged. For integration with autonomous platforms as
implemented in this work, the 3D model is applied to aid
physical observation of the navigation and inspection of the
robots, while retaining the capability to depict spatio-
temporal changes in the PV system output. This implies that
the integration of the model layer in the overall DT
architecture (Fig. 2b) must be designed to ease bi-directional
data transfer between the 3D-model-database-physical layer,
where the autonomous platforms operate in real-time.

As described in Section 2.1, the model developed in this work
is defined as a hybrid model because it combines the
functionality and dimensionality of a model-driven DT and a
data-driven DT. While the model aspect is used for PV
simulation and autonomous platform control, the data-driven
aspect incorporates data from sensors and the PV system to
define required actions and recommendations.

In the following sections of this work, we provide progress
for the ongoing implementation of a PV DT designed to
enable bidirectional control of autonomous platforms and
highlight important considerations.

3 3D-Model
Installation

Development for a PV

In this section, we describe the development of 3D models
for our experimental solar installation using two methods: (i)
a terrestrial laser scanner, and (ii) UAS SfM. We explore the
challenges, benefits, and limitations of each model. Note that
the models were developed to enable navigation and ease of
control for autonomous platforms, which are to be integrated
for routine or targeted maintenance operations on the site.

3.1 Terrestrial Laser Scanning (TLS) Model

Data acquisition has been done with the use of a terrestrial
laser scanner (TLS). A TLS is a land surveying instrument
that allows the creation of a discrete 3D model of the surface
of the object or terrain. The working principle is based on



sending a laser beam and recording the time-of-return, phase,
and angle of the reflected beam. Continuous scanning creates
a set of data points or outputs referred to as a point cloud. The
coordinates of each point are calculated as follows:

X sin(V) cos(Hz)
Y| =d|sin(V)sin(Hz) (D
VA cos (V)
_ Adc )
" 4nfn (2)

where, ¢, Catmos, M t, d, Hz,V,AD, f, X,Y,Z are the speed of light
traveling through a vacuum, 3 x 108m/s, speed of light in standard
atmosphere, light refractive index, in standard atmosphere (20°C) ~
1.0003, laser beam total time-of-flight, distance from the object,
horizontal bearing, vertical angle, phase difference between sand
and return signal, frequency of the laser signal, and coordinates of
each surface point.

The laser scanner used for this project was Leica RTC360, a
3D laser scanner with an integrated HDR spherical imaging
system and a Visual Inertial System (VIS) for real-time
registration. It is a white light phase scanner with a type 1
laser class system (following IEC 60825-1:2014). The range
of this scanner is 0,5 — 130 m and the field of view is 360°
horizontally and 300° vertically. The angular accuracy is
18, range accuracy of lmm+10 ppm. 3D point accuracy is
described as follows 1.9 mm @ 10 m, 2.9 mm @ 20 m, 5.3
mm @ 40 m. Range noise up to 0,5 mm at 20 m. The average
full coverage scan takes 2 minutes.

The survey was planned such that it would capture the
geometry of the solar farm panels, supports, wiring, and
mounting structure. This meant that there have been stations
on each side of each panel and stations in front and in the back
of each panel. In cases where it was necessary, the height of
the setup was changed to create a better line of sight for
elements close to the ground and high above.

The registration (alignment) of the setups was done in two
steps. Initial registration was done in Leica Cyclone
REGISTER 360 PLUS office software that was installed on
the tablet, which was also used to control the scanner.
Registration showed some problems due to the highly
repeatable look of the object, the number of reflections, and
the change of height in the setups. Due to this, the Leica
registration was treated as pre-registration, the point clouds
were exported to .e57 format, and then imported to AutoCAD
ReCap for checking and refinement. A 3-point semi-
automatic registration was then performed in this software.

Fig. 3 TLS 3D-model

Further cleaning of the point cloud was done in Autodesk
Recap. The cleaning consisted of removing the surrounding
buildings, grass, and other kinds of vegetation and artefacts.
In this case, since it was a scan of a metal object within a
metal fence, a large number of reflected objects, presenting
as ‘snow’ in the sky, have been observed. They were
relatively easy to identify and clean. The developed 3D TLS
model from this work is shown in Fig. 3. An immediately
interesting result of this survey was the number and
localisation of artefacts. TLS, mostly those that use invisible
light, are prone to reflections from highly reflective objects,
such as glass or polished metal. Also, dark or black objects
occasionally disappear from the resulting point clouds since
the reflective index I is so low that the internal software can’t
read them, or they are dismissed as noise. Both of those cases
depend to some extent on the angle the laser beam hits the
object, since longer travel of the beam within the glass/black
object introduces more disturbance. A solar farm consists of
different types of solar panels. The difference between them
is not immediately obvious to the naked eye; however, the
TLS generated significantly different point clouds for each of
the types.

3.2 Structure for Motion (SfM) Model

Structure-from-Motion (SfM) combines computer vision and
photogrammetry. SfM has become one of the most popular
means of obtaining 2D/3D data, including ortho-mosaics,
point clouds, and mesh models, during the last decade. SfTM
algorithms work based on estimating a 3D scene (sparse point
cloud), camera intrinsic parameters (focal length, centre of
projection, etc.), and camera extrinsic parameters (3D pose,
translation, rotation) from a set of overlapping images. The
first step is to extract a set of distinctive local features; the
second is robustly matching them between images, the third
is optimising their 3D positions, the fourth is determining the
camera parameters, and then iteratively adding more images
to the reconstruction.

The outputs of this process are the above-mentioned camera
parameters and a sparse point cloud with 3D points resulting
from matched 2D features. The sparse point cloud can then
be processed into final products. Since the camera parameters
are fixed, a dense point cloud can be estimated in a process
called Multi-View Stereo (MVS). This process is frequently
based on performing dense binocular stereo matching
between pairs of images with large overlap and then
combining multiple depth maps created in this way. A dense
point cloud can be transformed into a triangle mesh called
‘reality mesh’ if it is covered with textures processed from
original images. A resulting point cloud or mesh may be
scaled and georeferenced using Ground Control Points
(GCPs); however, scaling and georeferencing can be done
earlier during the scene reconstruction stage or sparse point
cloud stage. SfM offers the potential of filling the gap
between expensive but accurate laser scanning and cheap but
limited traditional survey. In addition, SfM requires only a
simple camera, which is more portable and offers faster data
acquisition than TLS. In most cases, postprocessing of data is
automated. In general, SfM offers a less accurate point cloud;
however, the visual representation is usually better, more
realistic (due to a blend of multiple images).



In this work, we describe the steps required to acquire a
detailed and near-accurate 3D model using SfM (Fig. 4). The
equipment used is the DJI Mavic 3 Thermal Drone with RTK
module and Emlid Reach RS2+ as a base for RTK. The Emlid
Reach M2 was used to create the GCP, and the data was
processed in DJI Terra. The Actual flight plan using DJI Pilot
2 in oblique was implemented. The parameters of the flight
plan are stated in Table I.

( UAV flight plan & parameters

- Determine flight plan (orthogonal/oblique)
- Determine parameter settings in planned mode (overlap,
\_ UAV angle, altitude, GSD, gimbal pitch, etc.) Y.

r ~
Operational Area Assessment

- UAV flight mission regulations on operational safety
- Privacy considerations (particularly when in built environment)

y

Environmental Conditions Assessment
- Time of day, temperature

- Wind, etc
Y
{ Optimal GCP location points ]
{ Gather data (Execute mission) ]
{ Data processing in dedicated software ]

|

Post-processing
- Data clean-up (artefacts removal)
-Planar surface cvaluation
-Dimensional accuracy evaluation

Fig. 4 SfM process flow

Table 1 Flight parameters

Parameter Value
Flight altitude 15m (relative to take-off)
Ground Separation Distance .
(GSD) 2.28cm/pixel
o o
Gimbal pitch 60 (pearby buildings
constraint)
Speed 2.5m/s
Pitch 2430
Side-overlap ratio 60%
Front-overlap ratio 70%
Photo-mode Time interval shot

The operation area must be assessed to ensure compliance
with UAV regulations, privacy, overcast daytime periods,
minimal shadows, reflections, and other environmental
conditions that could cause unwanted artefacts in the
reconstruction process. The outcome of the 3D SfM model
developed in this work is shown in Fig. 5.

Fig. 5 SfM 3D model

4 Structured Data Flow and Analytics

In this section, we describe the implemented data collection
process and integration with the 3D models. Since the goal of
this work is to enhance PV system monitoring using
autonomous platforms, we first consider the essential
functions and data to be collected.

4.1 HDT process flow

Fig. 6 describes the proposed HDT platform. It also provides
a detailed process flow between the implemented 3D models
and the autonomous platforms.

In a PV farm, the autonomous platforms are mostly applied
for imaging applications. The imaging process could be a
general inspection or a targeted inspection. It could also be
any type of camera (infra-red, electroluminescence, RGB,
and more). Additionally, the data collected may be required
for real-time analytics or stored for right-time analytics.
Regardless of the mode and specification, this implies that
image data collection is essential. Aside from the image data
collected, there are other data collected by the autonomous
platform; however, they are for its navigation and situational
awareness.

For an HDT as implemented in this work, the 3D model is
primarily used to assist precise and real-time tracking of the
autonomous platform. Consider a ground robot assigned to a
targeted inspection mission. It requires at least a LiDAR, an
RGB camera, and a real-time kinematics RTK-GPS module
for navigation to the target point. The waypoints or target
coordinates are delivered to the robot using the high-fidelity
3D model previously created. The robot then plans its paths
around the PV arrays, mounting structures, and other
obstacles to reach the desired location. Accurate tracking in
this case depends on the 3D model being a true replica of the
physical counterpart. To perform the actual inspection, the
robot can be remotely controlled or autonomously designed
to capture all images at the target location and direction. The
robot can only do this once it arrives at the target location.
The captured image files are converted to robotic operating
system files (ROS), compressed, and encoded before being
converted to formats that can be archived or processed in
other external storage. At this point, the image files can be
saved in a local directory or transferred to the HDT for further
processing, reconstruction, or analysis.
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Note that the ROS is applied for the robot navigation and initial
image processing. It is envisaged that in the near future, there
may be physics engines that can simultaneously perform both
functions as well as capture the multiphysics simulations and
analysis required for the PV panels themselves. This will
provide a higher synchronization level and real-time data
analytics.

The process developed for this work is to patch the images
through a ROS-to-Database bridge node and store the files in
Google Cloud Storage, while the URLs are stored in a SQL
database for easy retrieval. This is applicable to the framework
described in [21].

4.2 Structured Database Development

The process of data collection required for the various parts of
the HDT is shown in Fig. 7. The database structure provides a
closed-loop oversight on the interaction of the PV system and
the autonomous platform. Since this work is aimed at the
development of DT for PV systems, the data collection and
transfer from the PV system to the autonomous platform
distinguishes it from any other ROS simulation designed for
autonomous platform navigation.

The process described in Fig. 7 details the current
implementation for the experimental 200 kWp PV system at
the Institute for Safe Autonomy, University of York, United
Kingdom. The system has about 500 PV modules and 4
inverters. The data collected are from the inverters and three
sets of weather dataloggers installed at different sections of the
plant, other IoTs, and the UAV/UGYV images and sensor data.
The data is collected via both manufacturer-provided APIs and
self-implemented APIs as part of the data collection pipeline.
More detail is captured in the image.
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It is worth noting that the overall data flow in a commercial
system will be more complex, as there will be a need to
incorporate data security and ethical practices to avoid leakage
or litigation. The current structure highlights the basic flow
that can be implemented for essential data collection and
synchronization via respective open-source APIs and tools.

5 Model Verification

As previously mentioned in Section 3.2, the SfM model, which
appears as the most realistic and easiest to develop, does not
provide an accurate point cloud and must be rescaled to ensure
high accuracy in digital model dimensions compared to the
physical model. The verification method employed in this
work is executed using Marvelmind robotics (R) 018-210002
Super-Beacons. The beacons were applied using the non-
inverse architecture (NIA) and are capable of achieving +2cm
accuracy. This is important due to the nature of targeted
inspection that may be required in robot inspection of a PV
module within a large array.

Fig. 8 Real-time model verification

The beacons were integrated into Rviz2 on ROS 2 — Humble
(Fig. 8). Stationary beacons were attached to the edges of the
PV array, and the mobile beacon was moved around as
required to obtain actual site dimensions. This measurement
was initially implemented at a very low wind speed < 0.5m/s,
however, final verifications were made in a large indoor
facility to ensure accuracy. This is because the beacons are
more suited for indoor measurements. Other outdoor real-time
kinematics devices can be explored as well.

The 3D accuracy results are represented in Table II. The result
shows an average difference of about 10cm and Scm in the
length and width of the arrays. This may be sufficient for some
simulations, but could also be applied to rescale the 3D model.

The model created in this work was created as 4 separate
blocks, making it easier to rescale per section. The rescaled
model can now be applied for accurate real-time navigation.

Table 2 Dimension verification

Length Width Height
Parameter (Meas./Act.) (Meas./Act.) (Meas./Act.)
m m m
Arrayl 13.70/14.11 5.67/5.74 2.42/2.63
Array 2 12.72/12.77 5.27/5.34 2.74/2.98
Array 3 3.07/3.16 3.40/3.47 2.73/3.03
Array 4 12.74/12.77 5.30/5.34 2.80/2.78
Array 5 16.63/16.68 5.03/5.04 3.02/2.72
Est. Ave. 0.13 0.05 0.09
Error

6 Limitations and Challenges

In this Section, we highlight specific challenges to the hybrid
DT model approach being developed for autonomous PV
maintenance as discussed previously. Notable challenges are
listed below.

6.1 Multiphysics Simulation Engine

One of the most significant challenges in hybrid PV_DT
development is the multiphysics engine capable of co-
simulating both the PV system and robot operation. While
robo operating systems are simulated with a focus on the
mechanics, the PV systems are simulated with a focus on the
opto-electrical properties. As such, the PV-DT is operated on
a separate platform, interpreting data from the different
physics engines. It is envisaged that research into interoperable
systems will provide suitable solutions for similar
implementations.

6.2 Robot navigation constraints due to mesh artefacts

This limitation is based on reconstruction artefacts in the 3D
models. A clear example of this is when the TLS model is
compared to the SfM model. Since the SfM model was
constructed from images collected by flying a UAV over the
site, the reconstructed model is significantly bugged with
meshes that are non-existent under the PV modules. In contrast
to this, the TLS model is collected at the PV module level and
therefore provides a clear description of the PV mounting
structure and regions beneath the PV modules. This implies
that the navigation and inspection with ground robots will be
better under the TLS model compared to the more visually
realistic SfM model.

6.3 Computational requirement versus cost

From Sections IlI-A and VI-B, the TLS model appears to
provide the required fidelity. This is true, but it is at the
expense of enormous computational requirements for
processing and the final utility of the point-cloud data. While
the data-gathering process is quite laborious, it may become
impractical for the several hectares of land covered by utility-
scale PV systems, which are now in several GigaWatts of peak
power. This is mainly because the implementation cost may
outweigh the overall financial benefits when compared to the
SfM model.



6.4 Integration with existing PV simulation platforms

Existing PV simulation platforms are not designed to provide
models suitable for PV-DT 3D models. This is mainly because
of their limitation in capturing post-construction changes, such
as terrain modifications, layout dimension accuracy when
translated from design to physical installation by construction
workers, landscaping issues, real-time API integration from
design software, 3D model file types, and more. This limits the
readiness of DT integration with existing PV simulation
platforms. It is envisaged that, as the commercial
implementation of PV-DTs increases, probable solutions will
be integrated into the existing platforms.

6.5 Component-level fidelity

The accuracy of component-level modelling in terms of
location and dimensions for all equipment on a PV site remains
a major challenge. While it may be extremely challenging to
model sub-ground level components, such as cabling and base
structures, modelling small components, especially electrical
components such as optimizers, and cable connectors, with the
required accuracy. Capturing such components with required
accuracy becomes challenging when making measurements at
a large scale (system level).

6.6 Dynamic component modelling

This limitation affects the navigation of the robots the most. It
could be because of components that change position due to
high winds, recent human activity, small animals, or seasonal
variation. An example of this is grass, which is modelled as
hard meshes in the 3D model, meanwhile they are flexible in
real-time. While it is possible to identify and modify the
component texture for smaller systems, it becomes a tedious
task for large installations. Going a step further is the fact that
they dry out in some seasons and no longer exist. In other
seasons, they grow to the height of lower-level modules and
require targeted maintenance activity to trim them. This
dynamic component remains a challenge, and more research
effort will be required to resolve this issueAs previously
mentioned in Section 3.2, the SfM model, which appears as the
most realistic and easiest to develop, does not provide an
accurate point cloud and must be rescaled to ensure high
accuracy in digital model dimensions compared to the physical
model.

7 Conclusion

This work has successfully implemented 3D models for
integration and full-scale development of a PV-DT using a
real-time system at the University of York, United Kingdom.
The system-level integration with the database has been
described to highlight practical considerations for the
development of such systems. This fills a gap in the literature
where simulations are frequently used due to the cost and
technical capability limitations. We present the results
obtained, challenges observed, and the numerous research
gaps required for full-scale systems. It is observed that
compared to several information available in literature, the

implementation of a DT for PV systems for autonomous
systems is severely limited. In addition, the research gaps
realized are not only specific to PV systems, but several
interoperable systems within and outside the context of energy
system monitoring and maintenance. It is envisaged that this
and similar research works will provide more context and
solutions to delivering safe autonomy leveraging precision and
hyper-realistic 3D models developed at scale and
economically viable.
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