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Abstract 

This work highlights the significant aspects of developing a digital twin (DT) for photovoltaic (PV) systems, with a focus on 

digital models that enable the safe and efficient use of autonomous platforms. Autonomous systems in this context refer to 

unmanned air systems (UAS) and ground robots. The integration of autonomous systems introduces the need for a different 

approach to modeling principles to enhance navigation coordination and real-time image transfer. As part of ongoing research, 

this study investigates aspects of 3D modeling and database implementation. We present findings from the terrestrial laser 

scanner (TLS), structure-from-motion (SfM) 3D models, and interaction with the database structure for an experimental PV 

farm. As part of the project outcomes, we clarify the distinguishing factors between a digital twin for PV systems and advanced 

robotics systems. The potentials, research gaps, and critical lessons learned are also highlighted for in-depth understanding. This 

report aims to provide foundational documentation for future research or industrial implementation with a similar focus. It is 

envisaged that current and future solar photovoltaics research in this area will build on these insights, highlighting the realities 

and benefits of DT technology while enhancing in-depth penetration, management, and control of renewable energy systems. 

1 Introduction 

An increase in complexity, number of modular installations, 

and size of energy systems, coupled with unique demand 

profiles, has resulted in an unprecedented need for more 

advanced digitalization platforms [1], [2], [3]. The digital 

twins' concept describes an advanced digitalization mode, 

where virtual replicas of physical energy systems are created 

to enhance bidirectional control and real-time monitoring, 

optimization, and predictive maintenance [4], [5]  DTs are 

configured to integrate real-time data from sensors, keep 

historical records, and process the data using various machine 

learning (ML) or artificial intelligence (AI) algorithms to 

produce dynamic models that replicate the structure and 

characteristics of their physical counterparts or physical twin 

(PT) [6]. DTs can be implemented for individual components, 

sub-systems [7], or whole systems [8], making it possible to 

develop highly scalable energy systems as they become 

increasingly complex and interconnected. This offers 

unprecedented opportunities for improving the efficiency, 

reliability, and sustainability of very large energy systems 

such as local microgrids or utility scales. Note that the 

complexity of a DT itself is dependent on the use 

necessitating its development.  

DTs have been implemented mostly using simulations for 

several energy systems, such as wind [9], bioenergy [10], 

micro-grid [11], and PV systems [12]. This work focuses on 

the development of DTs for PV systems based on the need to 

integrate UAVs and UGVs for installed PV systems 

maintenance. We focus on the use of 3D models and data 

storage to enable real-time interaction and control of the 

UAV/UGV, providing valuable insights into the challenges 

and potential for future development. 

 

2 DT for PV Systems 

2.1 Conventional Approach 

Several references indicate the implementation of DT for PV 

systems. While most of them are at the component or sub-

module level [13], [14]; others do not reflect the true nature 

of a DT, which is bi-directional and real-time interaction and 

control [15], [16]. DTs can largely be classified into model-

driven (MD-DT), data-driven (DD-DT), or hybrid models 

(H-DT) [6] depending on the purpose of the DT. Model-

driven DTs rely on mathematical or physical models of the 

physical twin to determine a relevant output, while data-

driven DTs are reliant on historical or real-time data, which 

are processed and applied for feedback. Hybrid models 

combine both for a more detailed evaluation. System 

integration in model-driven DTs can sometimes be extended 

to the use of computer-aided-design (CAD) models for 

immersive and real-time applications. This creates a 

wholesome and rigorous process that ensures verifiable and 

trustworthy systems. This work aims to implement a hybrid-

model DT using CAD models to ensure safe autonomy in 

large systems maintenance and monitoring.  
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Fig. 1: Simplified overview of conventional PV DT 

 

PV systems have been conventionally monitored using 

different digitized platforms that do not have to utilize real-

time data, such as those described in [17], [18]. The platforms 

are also not capable of implementing real-time control, thus 

limiting the system's reliability and ease of management. [19] 

implemented advanced monitoring DT with real-time 

bidirectional data flow and system control. In Fig. 1, we 

present a simplified overview of the PV DT showing the 

interaction between the PT and DT. Note that for the 

conventional PV-DT, the models are often mathematical 

models only or implemented in parallel with 2D graphic 

models. This is simply because there is no need to use a 3D 

model except for aesthetic purposes. However, with the 

increasing need to alleviate the rigor associated with PV plant 

maintenance and the existence of autonomous platforms 

capable of remote maintenance activities, there is a new gap 

for developing models that simplify such activities while 

ensuring the safety of assets and involved humans. 

2.2 PV-DT models 

Autonomous platforms drastically reduce inspection time and 

enable frequent monitoring activities for remote and large-

scale systems. However, there exists limited literature 

detailing the physical implementation of a DT for solar PV, 

and not only simulation, such as in [20]. Determining a 

suitable model in this use case depends on a variety of 

parameters, and core to this is the need to safely navigate the 

platforms around the PV infrastructure, little animals that 

roam the site, and humans involved in the overall monitoring 

and maintenance procedures.  

In Fig. 2a, we highlight different functions and perspectives 

of a PV-DT model, while the DT layer-level architecture and 

model integration are depicted in Fig.2b.  

 

 
a 

 
b 

Fig. 2 PV-DT (a) Model layer taxonomy, (b) Model-layer 

integration. 

As shown in PV-DT taxonomy of Fig. 2a, the digital model 

layer can be developed based on the various context and use 

envisaged. For integration with autonomous platforms as 

implemented in this work, the 3D model is applied to aid 

physical observation of the navigation and inspection of the 

robots, while retaining the capability to depict spatio-

temporal changes in the PV system output. This implies that 

the integration of the model layer in the overall DT 

architecture (Fig. 2b) must be designed to ease bi-directional 

data transfer between the 3D-model-database-physical layer, 

where the autonomous platforms operate in real-time. 

As described in Section 2.1, the model developed in this work 

is defined as a hybrid model because it combines the 

functionality and dimensionality of a model-driven DT and a 

data-driven DT. While the model aspect is used for PV 

simulation and autonomous platform control, the data-driven 

aspect incorporates data from sensors and the PV system to 

define required actions and recommendations. 

In the following sections of this work, we provide progress 

for the ongoing implementation of a PV DT designed to 

enable bidirectional control of autonomous platforms and 

highlight important considerations. 

 

3 3D-Model Development for a PV 

Installation 

In this section, we describe the development of 3D models 

for our experimental solar installation using two methods: (i) 

a terrestrial laser scanner, and (ii) UAS SfM. We explore the 

challenges, benefits, and limitations of each model. Note that 

the models were developed to enable navigation and ease of 

control for autonomous platforms, which are to be integrated 

for routine or targeted maintenance operations on the site. 

3.1 Terrestrial Laser Scanning (TLS) Model 

Data acquisition has been done with the use of a terrestrial 

laser scanner (TLS). A TLS is a land surveying instrument 

that allows the creation of a discrete 3D model of the surface 

of the object or terrain. The working principle is based on 
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sending a laser beam and recording the time-of-return, phase, 

and angle of the reflected beam. Continuous scanning creates 

a set of data points or outputs referred to as a point cloud. The 

coordinates of each point are calculated as follows:   

[
𝑋
𝑌
𝑍
] = 𝑑 [

sin(𝑉) cos(𝐻𝑧)

sin(𝑉) sin(𝐻𝑧)
cos⁡(𝑉)

]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

𝑑 =
∆Φ𝑐

4𝜋𝑓𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where, 𝑐, 𝑐𝑎𝑡𝑚𝑜𝑠 , 𝑛, 𝑡, 𝑑, 𝐻𝑧, 𝑉, ∆Φ, 𝑓, 𝑋, 𝑌, 𝑍 are the speed of light 

traveling through a vacuum, 3 × 108𝑚/𝑠, speed of light in standard 

atmosphere, light refractive index, in standard atmosphere (200𝐶) ≈
⁡1.0003, laser beam total time-of-flight, distance from the object, 

horizontal bearing, vertical angle, phase difference between sand 

and return signal, frequency of the laser signal, and coordinates of 

each surface point.  

The laser scanner used for this project was Leica RTC360, a 

3D laser scanner with an integrated HDR spherical imaging 

system and a Visual Inertial System (VIS) for real-time 

registration. It is a white light phase scanner with a type 1 

laser class system (following IEC 60825-1:2014). The range 

of this scanner is 0,5 – 130 m and the field of view is 3600 

horizontally and 300° vertically. The angular accuracy is 

18’’, range accuracy of 1mm+10 ppm. 3D point accuracy is 

described as follows 1.9 mm @ 10 m,  2.9 mm @ 20 m, 5.3 

mm @ 40 m. Range noise up to 0,5 mm at 20 m. The average 

full coverage scan takes 2 minutes. 

The survey was planned such that it would capture the 

geometry of the solar farm panels, supports, wiring, and 

mounting structure. This meant that there have been stations 

on each side of each panel and stations in front and in the back 

of each panel. In cases where it was necessary, the height of 

the setup was changed to create a better line of sight for 

elements close to the ground and high above.  

The registration (alignment) of the setups was done in two 

steps. Initial registration was done in Leica Cyclone 

REGISTER 360 PLUS office software that was installed on 

the tablet, which was also used to control the scanner. 

Registration showed some problems due to the highly 

repeatable look of the object, the number of reflections, and 

the change of height in the setups. Due to this, the Leica 

registration was treated as pre-registration, the point clouds 

were exported to .e57 format, and then imported to AutoCAD 

ReCap for checking and refinement. A 3-point semi-

automatic registration was then performed in this software.  

 

Fig. 3 TLS 3D-model 

Further cleaning of the point cloud was done in Autodesk 

Recap. The cleaning consisted of removing the surrounding 

buildings, grass, and other kinds of vegetation and artefacts. 

In this case, since it was a scan of a metal object within a 

metal fence, a large number of reflected objects, presenting 

as ‘snow’ in the sky, have been observed. They were 

relatively easy to identify and clean. The developed 3D TLS 

model from this work is shown in Fig. 3. An immediately 

interesting result of this survey was the number and 

localisation of artefacts. TLS, mostly those that use invisible 

light, are prone to reflections from highly reflective objects, 

such as glass or polished metal. Also, dark or black objects 

occasionally disappear from the resulting point clouds since 

the reflective index I is so low that the internal software can’t 

read them, or they are dismissed as noise. Both of those cases 

depend to some extent on the angle the laser beam hits the 

object, since longer travel of the beam within the glass/black 

object introduces more disturbance. A solar farm consists of 

different types of solar panels. The difference between them 

is not immediately obvious to the naked eye; however, the 

TLS generated significantly different point clouds for each of 

the types.  

3.2 Structure for Motion (SfM) Model 

Structure-from-Motion (SfM) combines computer vision and 

photogrammetry. SfM has become one of the most popular 

means of obtaining 2D/3D data, including ortho-mosaics, 

point clouds, and mesh models, during the last decade. SfM 

algorithms work based on estimating a 3D scene (sparse point 

cloud), camera intrinsic parameters (focal length, centre of 

projection, etc.), and camera extrinsic parameters (3D pose, 

translation, rotation) from a set of overlapping images. The 

first step is to extract a set of distinctive local features; the 

second is robustly matching them between images, the third 

is optimising their 3D positions, the fourth is determining the 

camera parameters, and then iteratively adding more images 

to the reconstruction.  

The outputs of this process are the above-mentioned camera 

parameters and a sparse point cloud with 3D points resulting 

from matched 2D features. The sparse point cloud can then 

be processed into final products. Since the camera parameters 

are fixed, a dense point cloud can be estimated in a process 

called Multi-View Stereo (MVS). This process is frequently 

based on performing dense binocular stereo matching 

between pairs of images with large overlap and then 

combining multiple depth maps created in this way. A dense 

point cloud can be transformed into a triangle mesh called 

‘reality mesh’ if it is covered with textures processed from 

original images. A resulting point cloud or mesh may be 

scaled and georeferenced using Ground Control Points 

(GCPs); however, scaling and georeferencing can be done 

earlier during the scene reconstruction stage or sparse point 

cloud stage. SfM offers the potential of filling the gap 

between expensive but accurate laser scanning and cheap but 

limited traditional survey. In addition, SfM requires only a 

simple camera, which is more portable and offers faster data 

acquisition than TLS. In most cases, postprocessing of data is 

automated. In general, SfM offers a less accurate point cloud; 

however, the visual representation is usually better, more 

realistic (due to a blend of multiple images).  
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In this work, we describe the steps required to acquire a 

detailed and near-accurate 3D model using SfM (Fig. 4). The 

equipment used is the DJI Mavic 3 Thermal Drone with RTK 

module and Emlid Reach RS2+ as a base for RTK. The Emlid  

Reach M2 was used to create the GCP, and the data was 

processed in DJI Terra. The Actual flight plan using DJI Pilot 

2 in oblique was implemented. The parameters of the flight 

plan are stated in Table I. 

 

Fig. 4 SfM process flow 

Table 1 Flight parameters 

Parameter Value 

Flight altitude 15m (relative to take-off) 

Ground Separation Distance 

(GSD) 
2.28cm/pixel 

Gimbal pitch 
600 (nearby buildings 

constraint) 

Speed 2.5m/s 

Pitch 2430 

Side-overlap ratio 60% 

Front-overlap ratio 70% 

Photo-mode Time interval shot 

The operation area must be assessed to ensure compliance 

with UAV regulations, privacy, overcast daytime periods, 

minimal shadows, reflections, and other environmental 

conditions that could cause unwanted artefacts in the 

reconstruction process. The outcome of the 3D SfM model 

developed in this work is shown in Fig. 5. 

 

Fig. 5 SfM 3D model 

4 Structured Data Flow and Analytics 

In this section, we describe the implemented data collection 

process and integration with the 3D models. Since the goal of 

this work is to enhance PV system monitoring using 

autonomous platforms, we first consider the essential 

functions and data to be collected.  

4.1 HDT process flow 

Fig. 6 describes the proposed HDT platform. It also provides 

a detailed process flow between the implemented 3D models 

and the autonomous platforms. 

In a PV farm, the autonomous platforms are mostly applied 

for imaging applications. The imaging process could be a 

general inspection or a targeted inspection. It could also be 

any type of camera (infra-red, electroluminescence, RGB, 

and more). Additionally, the data collected may be required 

for real-time analytics or stored for right-time analytics. 

Regardless of the mode and specification, this implies that 

image data collection is essential. Aside from the image data 

collected, there are other data collected by the autonomous 

platform; however, they are for its navigation and situational 

awareness. 

For an HDT as implemented in this work, the 3D model is 

primarily used to assist precise and real-time tracking of the 

autonomous platform. Consider a ground robot assigned to a 

targeted inspection mission. It requires at least a LiDAR, an 

RGB camera, and a real-time kinematics RTK-GPS module 

for navigation to the target point. The waypoints or target 

coordinates are delivered to the robot using the high-fidelity 

3D model previously created. The robot then plans its paths 

around the PV arrays, mounting structures, and other 

obstacles to reach the desired location. Accurate tracking in 

this case depends on the 3D model being a true replica of the 

physical counterpart. To perform the actual inspection, the 

robot can be remotely controlled or autonomously designed 

to capture all images at the target location and direction. The 

robot can only do this once it arrives at the target location. 

The captured image files are converted to robotic operating 

system files (ROS), compressed, and encoded before being 

converted to formats that can be archived or processed in 

other external storage. At this point, the image files can be 

saved in a local directory or transferred to the HDT for further 

processing, reconstruction, or analysis.  
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Fig. 6 HDT process flow 

Note that the ROS is applied for the robot navigation and initial 

image processing. It is envisaged that in the near future, there 

may be physics engines that can simultaneously perform both 

functions as well as capture the multiphysics simulations and 

analysis required for the PV panels themselves. This will 

provide a higher synchronization level and real-time data 

analytics.  

The process developed for this work is to patch the images 

through a ROS-to-Database bridge node and store the files in 

Google Cloud Storage, while the URLs are stored in a SQL 

database for easy retrieval. This is applicable to the framework 

described in [21]. 

4.2 Structured Database Development 

The process of data collection required for the various parts of 

the HDT is shown in Fig. 7. The database structure provides a 

closed-loop oversight on the interaction of the PV system and 

the autonomous platform. Since this work is aimed at the 

development of DT for PV systems, the data collection and 

transfer from the PV system to the autonomous platform 

distinguishes it from any other ROS simulation designed for 

autonomous platform navigation.  

The process described in Fig. 7 details the current 

implementation for the experimental 200 kWp PV system at 

the Institute for Safe Autonomy, University of York, United 

Kingdom. The system has about 500 PV modules and 4 

inverters. The data collected are from the inverters and three 

sets of weather dataloggers installed at different sections of the 

plant, other IoTs, and the UAV/UGV images and sensor data. 

The data is collected via both manufacturer-provided APIs and 

self-implemented APIs as part of the data collection pipeline. 

More detail is captured in the image. 
 

Fig. 7 Structured database 
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It is worth noting that the overall data flow in a commercial 

system will be more complex, as there will be a need to 

incorporate data security and ethical practices to avoid leakage 

or litigation. The current structure highlights the basic flow 

that can be implemented for essential data collection and 

synchronization via respective open-source APIs and tools. 

 

5 Model Verification 

As previously mentioned in Section 3.2, the SfM model, which 

appears as the most realistic and easiest to develop, does not 

provide an accurate point cloud and must be rescaled to ensure 

high accuracy in digital model dimensions compared to the 

physical model. The verification method employed in this 

work is executed using Marvelmind robotics (R) 018-210002 

Super-Beacons. The beacons were applied using the non-

inverse architecture (NIA) and are capable of achieving ±2𝑐𝑚 

accuracy. This is important due to the nature of targeted 

inspection that may be required in robot inspection of a PV 

module within a large array. 

 

  Fig. 8 Real-time model verification  

The beacons were integrated into Rviz2 on ROS 2 – Humble 

(Fig. 8). Stationary beacons were attached to the edges of the 

PV array, and the mobile beacon was moved around as 

required to obtain actual site dimensions. This measurement 

was initially implemented at a very low wind speed < 0.5𝑚/𝑠, 
however, final verifications were made in a large indoor 

facility to ensure accuracy. This is because the beacons are 

more suited for indoor measurements. Other outdoor real-time 

kinematics devices can be explored as well.  

The 3D accuracy results are represented in Table II. The result 

shows an average difference of about 10cm and 5cm in the 

length and width of the arrays. This may be sufficient for some 

simulations, but could also be applied to rescale the 3D model. 

The model created in this work was created as 4 separate 

blocks, making it easier to rescale per section. The rescaled 

model can now be applied for accurate real-time navigation. 

  

Table 2 Dimension verification 

Parameter 

Length 

(Meas./Act.)  

m  

Width 

(Meas./Act.)  

m 

Height 

(Meas./Act.) 

m 

Array1 13.70/14.11 5.67/5.74 2.42/2.63 

Array 2 12.72/12.77 5.27/5.34 2.74/2.98 

Array 3 3.07/3.16 3.40/3.47  2.73/3.03 

Array 4 12.74/12.77 5.30/5.34 2.80/2.78 

Array 5 16.63/16.68 5.03/5.04 3.02/2.72 

Est. Ave. 

Error 
0.13 0.05 0.09 

  

6 Limitations and Challenges 

In this Section, we highlight specific challenges to the hybrid 

DT model approach being developed for autonomous PV 

maintenance as discussed previously. Notable challenges are 

listed below. 

6.1 Multiphysics Simulation Engine 

One of the most significant challenges in hybrid PV_DT 

development is the multiphysics engine capable of co-

simulating both the PV system and robot operation. While 

robo operating systems are simulated with a focus on the 

mechanics, the PV systems are simulated with a focus on the 

opto-electrical properties. As such, the PV-DT is operated on 

a separate platform, interpreting data from the different 

physics engines. It is envisaged that research into interoperable 

systems will provide suitable solutions for similar 

implementations.  

6.2 Robot navigation constraints due to mesh artefacts 

This limitation is based on reconstruction artefacts in the 3D 

models. A clear example of this is when the TLS model is 

compared to the SfM model. Since the SfM model was 

constructed from images collected by flying a UAV over the 

site, the reconstructed model is significantly bugged with 

meshes that are non-existent under the PV modules. In contrast 

to this, the TLS model is collected at the PV module level and 

therefore provides a clear description of the PV mounting 

structure and regions beneath the PV modules. This implies 

that the navigation and inspection with ground robots will be 

better under the TLS model compared to the more visually 

realistic SfM model. 

6.3 Computational requirement versus cost 

From Sections III-A and VI-B, the TLS model appears to 

provide the required fidelity. This is true, but it is at the 

expense of enormous computational requirements for 

processing and the final utility of the point-cloud data. While 

the data-gathering process is quite laborious, it may become 

impractical for the several hectares of land covered by utility-

scale PV systems, which are now in several GigaWatts of peak 

power. This is mainly because the implementation cost may 

outweigh the overall financial benefits when compared to the 

SfM model.  



7 
 

6.4 Integration with existing PV simulation platforms 

 Existing PV simulation platforms are not designed to provide 

models suitable for PV-DT 3D models. This is mainly because 

of their limitation in capturing post-construction changes, such 

as terrain modifications, layout dimension accuracy when 

translated from design to physical installation by construction 

workers, landscaping issues, real-time API integration from 

design software, 3D model file types, and more. This limits the 

readiness of DT integration with existing PV simulation 

platforms.  It is envisaged that, as the commercial 

implementation of PV-DTs increases, probable solutions will 

be integrated into the existing platforms.   

6.5 Component-level fidelity 

 The accuracy of component-level modelling in terms of 

location and dimensions for all equipment on a PV site remains 

a major challenge. While it may be extremely challenging to 

model sub-ground level components, such as cabling and base 

structures, modelling small components, especially electrical 

components such as optimizers, and cable connectors, with the 

required accuracy. Capturing such components with required 

accuracy becomes challenging when making measurements at 

a large scale (system level). 

6.6 Dynamic component modelling 

This limitation affects the navigation of the robots the most. It 

could be because of components that change position due to 

high winds, recent human activity, small animals, or seasonal 

variation. An example of this is grass, which is modelled as 

hard meshes in the 3D model, meanwhile they are flexible in 

real-time. While it is possible to identify and modify the 

component texture for smaller systems, it becomes a tedious 

task for large installations. Going a step further is the fact that 

they dry out in some seasons and no longer exist. In other 

seasons, they grow to the height of lower-level modules and 

require targeted maintenance activity to trim them. This 

dynamic component remains a challenge, and more research 

effort will be required to resolve this issueAs previously 

mentioned in Section 3.2, the SfM model, which appears as the 

most realistic and easiest to develop, does not provide an 

accurate point cloud and must be rescaled to ensure high 

accuracy in digital model dimensions compared to the physical 

model.  
 

7 Conclusion 

This work has successfully implemented 3D models for 

integration and full-scale development of a PV-DT using a 

real-time system at the University of York, United Kingdom. 

The system-level integration with the database has been 

described to highlight practical considerations for the 

development of such systems. This fills a gap in the literature 

where simulations are frequently used due to the cost and 

technical capability limitations. We present the results 

obtained, challenges observed, and the numerous research 

gaps required for full-scale systems. It is observed that 

compared to several information available in literature, the 

implementation of a DT for PV systems for autonomous 

systems is severely limited. In addition, the research gaps 

realized are not only specific to PV systems, but several 

interoperable systems within and outside the context of energy 

system monitoring and maintenance. It is envisaged that this 

and similar research works will provide more context and 

solutions to delivering safe autonomy leveraging precision and 

hyper-realistic 3D models developed at scale and 

economically viable. 
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